
An Energy-aware IoT Gateway, with Continuous Processing
of Sensor Data

L.E. Talavera1, M. Endler1, S. Colcher1

1 Department of Informatics – Pontifı́cia Universidade Católica do Rio de Janeiro
Rio de Janeiro, Brazil

{lrios,endler,colcher}@inf.puc-rio.br

Abstract. Few studies have investigated and proposed a middleware solution for
the Internet of Mobile Things (IoMT), where the smart things (Smart Objects)
can be moved, or else can move autonomously, but remain accessible from any
other computer over the Internet. In this context, there is a need for energy-
efficient gateways to provide connectivity to a great variety of Smart Objects.
Proposed solutions have shown that mobile devices (smartphones and tablets)
are a good option to become the universal intermediates by providing a connec-
tion point to nearby Smart Objects with short-range communication technolo-
gies. However, they only focus on the transmission of raw sensor data (obtained
from connected Smart Objects) to the cloud where processing (e.g. aggregation)
is performed. Internet Communication is a strong battery-draining activity for
mobile devices; moreover, bandwidth may not be sufficient when large amounts
of information is being received from the Smart Objects. Hence, we argue that
some of the processing should be pushed as close as possible to the sources. In
this regard, Complex Event Processing (CEP) is often used for real-time pro-
cessing of heterogeneous data and could be a key technology to be included in
the gateways. It allows a way to describe the processing as expressive queries
that can be dynamically deployed or removed on-the-fly. Thus, being suitable
for applications that have to deal with dynamic adaptation of local processing.
This paper describes an extension of a mobile middleware with the inclusion of
continuous processing of sensor data, its design and prototype implementation
for Android. Experiments have shown that our implementation delivers good
reduction in energy and bandwidth consumption.

1. Introduction

Despite the huge number of potential applications and the increasing proliferation of ap-
pliances with embedded processing and wireless communication capacity, yet there is no
widely accepted approach, established standards and consolidated technologies for the
Internet of Things (IoT) at a global scale. In other words, extraction of meaningful infor-
mation of data from tens of billions of sensors and actuators in (near) real-time is still a
challenge. In particular, very few studies have focused on the Internet of Mobile Things
(IoMT) where a Mobile Object (M-OBJ) may be any movable object (Thing) that carries
sensors and/or actuators and has some means of wireless connectivity. In this context
of general and unrestricted mobility of Smart Objects, different resources (e.g. embed-
ded and wearable sensors) can become available and unavailable at any moment without
previous warning.

Nowadays, IoT is evolving towards a heterogeneous network including a mix of
IP-based connectivity and an array of short-range, wireless technologies (e.g., Bluetooth,
NFC, ANT+), the latter used by peripheral devices in the edge networks. Furthermore,
according to [daCosta 2013], IPv6 does not solve all IoT problems because management,
rather than addressing and routing, is the biggest challenge of IoT.

IoT communication involves small but frequent messages, where each message
individually is unimportant, but the statistical properties of the corresponding data flows
carry the relevant pieces of information. In this regard, Complex Event Processing (CEP)
is a rather novel software technology for continuous real-time processing of high vol-
umes of data items, that allows an easy specification of patterns that represent different
situations. CEP processing combines heterogeneous data from different sources to find
patterns and generate high-level events (e.g. a crash or a fraud). Nevertheless, current
CEP solutions are server centralized imposing a high energy cost for the communication.

Moreover, recent works propose the use of mobile devices (e.g. smartphones and
tablets) as the propagator nodes in IoT, since they can gather the information of the envi-
ronment and transmit it to the cloud. However, the huge volume of transmissions among
nodes (mobile devices) and cloud would drain the device’s battery and delay the deliv-
ery of data if the network quality is not good enough to provide sufficient bandwidth.
As the data volume grows, this approach for sole cloud-based processing becomes less
suitable [Saleh and Sattler 2013]. For this reasons, many works advocate that it is impor-
tant to have as much in-network processing as possible, by performing some functions
of filtering, aggregation and pre-processing over the data streams before sending any
information to the cloud. In fact, recent works has shown that current mobile devices
have the sufficient capacity to execute CEP, allowing them to perform such processing
[Stipkovic et al. 2013].

In addition, CEP allows the re-configuration of its processing (deploy/un-deploy
queries) on-the-fly. This characteristic is very useful for mobile devices since they can
be found in different environments with different resources and thus different processing
requirements. Our main contribution is to provide a method for dynamic processing of
sensor data in the IoT-gateways and show the feasibility of using CEP in mobile devices
by suggesting which kind of processing should or shouldn’t be executed on them.

The remainder of this paper is structured as follows. In the next section we give an
overview of the enabling technologies and main concepts of our approach towards IoMT.
Section 3 discusses the energy consumption in mobile devices and its main concerns.
In section 4, we present our approach to handle in-network processing and its general
architecture. In section 5 we describe and discuss the results of the performance tests. In
section 6 related work is discussed. Finally, in section 7, we draw concluding remarks
and point to future work.

2. Enabling Technologies

This section presents the main concepts and technologies that form the foundations of our
approach.

2.1. The Mobile Hub
The Mobile Hub (M-Hub) is a general-purpose middleware that enables mobile personal
devices (smartphones or tablets) to become the propagator nodes (i.e. gateways to the
Internet) for the simpler IoT objects or Mobile Objects (M-OBJ) (sensors/actuators) with
only short-range WPAN interfaces. This middleware is responsible for discovering and
opportunistically connecting many different simple M-OBJs to the Internet in order to be
able to “bridge the gap” between the Internet connection to the cloud and the short-range
wireless connections established with M-OBJs. Furthermore, the M-Hub provides con-
text information like the current local time and/or the (approximate) location to the data
obtained from the M-OBJs to which it is connected [Talavera et al. 2015]. This feature
opens up to IoT applications new ways of classifying, filtering or searching data gathered
from the M-OBJs. As its first realization it is implemented for Android and uses Bluetooth
Low Energy (BLE) as WPAN communication technology. BLE is being widely adopted
for IoT and allows a low rate and very low-power communications.

2.1.1. Main Components

The M-Hub consists of three services and one manager, all executing in background.
The S2PA Service is responsible of discovering and monitoring nearby M-OBJs that use
the supported WPAN technologies. This service keeps a record of the current provided
sensors/actuators (e.g. temperature, accelerometer, humidity) and publish the sensed in-
formation to all the components that require it. One of which is the Connection Service,
where messages are sent to/from the Cloud in a JSON format through an Internet connec-
tion. Important messages (e.g. M-OBJ connection/disconnection) are sent immediately
to the cloud, while sensor data or low relevance messages (e.g. temperature readings) are
grouped, to be transmitted as a bulk message at a certain time interval.

Messages that are going to be sent to the cloud are enriched with context infor-
mation, like a timestamp and the approximate location. The location is obtained through
the Location Service, responsible for sampling the M-Hub’s current position obtained
from different providers like GPS, network, or a manually entered (in case of a fixed lo-
cation). The periodicity and duration of all of these three service’s actions, is influenced
by the device’s current energy level (LOW, MEDIUM, HIGH), and is set by the Energy
Manager, which from time to time sample’s the device battery level and checks if it is
connected to a power source. The communication among all the services is done using an
EventBus1, which is a Publish-Subscribe (PubSub) event bus optimized for Android that
helps to decouple the components, and allows the inclusion of different services without
many code modifications.

2.1.2. Short-Range Sensor, Presence and Actuation API

One of the main purposes of the M-Hub is to handle M-OBJs with different WPAN tech-
nologies (e.g. BLE, ANT+, Classic Bluetooth). To this end, it has a protocol for short-
range communication with M-OBJs, based in two interfaces that help developers imple-
ment the different technologies uniformly. On the one hand, the Technology Interface

1http://greenrobot.github.io/EventBus

maps the main capabilities of each WPAN technology to some methods that have to per-
form the following actions: 1) Discovery of, and connection to M-OBJs, 2) Discovery of
services provided by each M-OBJ, 3) Read and write of service attributes (e.g. sensor val-
ues, and actuator commands) and 4) Notifications about disconnection of M-OBJs. And
on the other hand, the Technology Listener Interface is implemented by the S2PA Service
to listen to all the important events that occur on the different technologies and publish
them for any interested component. The data published has the structure showed in the
Figure 1.

SensorData

mouuid : String
signal : Double
action : String
sensorName : String
sensorValue : Double[]

toJSON() : String

Figure 1. Basic sensor data structure of the M-Hub

The Technologies have to include an ID at programming time to be uniquely iden-
tified. This ID is also combined with the M-OBJ’s mac address to form the Mobile Object
Universally Unique Identifier (MOUUID) which helps developers to differentiate all the
M-OBJs, even if they are communicating with the M-Hub under different WPAN tech-
nologies. As an example, the module for BLE is defined with the ID 1, and a MOUUID
under such technology could be 1-B4994C64BA9F.

2.2. Complex Event Processing

Complex Event Processing (CEP) is a software technology that helps to correlate high
volumes of incoming data items which are considered as events happening in the external
world such as changes in a company’s stock value, or a simple change in the temperature.
A CEP solution provides capabilities of filtering, aggregation, correlation and analysis
over continuous streams of data. It can detect high-level events that represent different
situations and can trigger actions such as notifications or interactions with business pro-
cesses. In fact, aggregation can be described, as combining and transforming lower level
events (e.g. changes in the temperature and humidity) into higher level events (e.g. a fire,
a credit-card fraud) to respond upon them as soon as possible.

In CEP, incoming messages runs through a set of continuous queries to produce
derived events or sets of data (complex events), this process is performed by an entity
called Event Processing Agent (EPA). An EPA may perform different kinds of compu-
tation on events, such as filtering and aggregation, in order to detect patterns of events.
A set of EPAs and the channels they use to communicate form what is called an Event
Processing Network (EPN), that can be distributed among multiple physical networks and
computers. The top-level architecture of an EPN consists of three layers: event producers,
event consumers and event processing logic, plus the communication channels between
the layers. An EPA can act as any of the three roles, an event producer at one moment, a
consumer at another, or an event processor for the events that it receives from the sources.

Event Producers Also known as event sources, is the layer in charge of producing or
capturing events in the internal or external environment (e.g. sensor values, fi-
nancial trades) to later be forwarded to the event processing logic layer. Event
producers could be a software module, different sensors or even a clock.

Event Processing Logic The event processing logic consists of a CEP engine and contin-
uous queries. The CEP engine is where all the events are analyzed, while queries
are a set of patterns that describe the situations of interest presented in the form of
combinations of events with causal, temporal, spacial and other relations. Queries
are defined in a declarative SQL-like language. An example would be a query that
detects when several devices are within a certain distance of each other.

Event Consumers Event consumers receive complex events from the Event processing
logic in order to deal with detected situations. Typical event consumers could be
applications for visualizing events or the cloud.

There are many flavours technologies and languages for CEP, but we focus on
Esper2, since it is an open-source component available under GNU GPL license and one
of the most used CEP engine3. Esper events allow a rich domain object representation,
since it supports all aspects of object-oriented design as well as dynamic typing, while
other CEP technologies force a flat Map-like tuple-set definition of events. It also offers
a rich set of parameterizable data windows (expiry policies) while most other engines
provide a very small set of very simple rolling, sliding or hopping windows4. Moreover,
different from other CEP technologies it has been successfully ported to Android with the
name of “Asper”[Eggum 2014]. This allow us to include it as an additional service for
the M-Hub.

Esper uses a declarative Event Processing Language (EPL) that derives many
properties from the SQL standard, to define the event processing rules used to detect the
patterns over the streaming data. An event-processing engine analyzes the event streams
and executes the matching rules in-memory[Stipkovic et al. 2013]. An application that
embeds Esper, can employ one or more engine instances with different configurations
and queries. However, since mobile devices still possess limited resources like process-
ing power it is recommended that all EPAs share one Esper instance instead of having an
own instance for each agent [Dunkel et al. 2013].

3. Energy Consumption in Mobile Devices
Mobile devices are general-purpose computers that get their power to process from batter-
ies which have a limited amount of energy. Table 1 shows some of their main character-
istics. Many of such characteristics evolved at an exponential rate except for the battery
capacity, limiting its use to day-to-day tasks.

Different from desktop and laptop computers, where the CPU is likely to be the
component that consumes more energy (often more than 60 percent of the total power),
in mobile devices there are several components that may consume nearly the same or
event more energy than the CPU. For example, an often cited power budget mobile phone

2http://www.espertech.com/esper/documentation.php
3http://www.espertech.com/esper/faq esper.php
4http://www.espertech.com/esper/faq esper.php#comparison
5Energy Consumption: Modeling and Optimization. 2014

1995 2000 2005 2010 2015
Cellular Generation 2G 2.5G - 3G 3.5G Pre-4G 4G

Standard GSM GPRS HSPA HSPA, LTE LTE, LTE-A
Downlink (Mb/s) 0.01 0.1 1 10 100

Display pixels (x 1000) 4 16 64 256 1024
Comms modules - - Wi-Fi, Bluetooth Wi-Fi, Bluetooth Wi-Fi, Bluetooth LE, RFID

Battery capacity(Wh) 1 2 3 4 5

Table 1. Evolution of mobile phones5

streaming a 384 kb/s video has 1.2 W power drain caused by the network interface, 1
W for the display, and 0.8 W for the CPU and memory operations [Tarkoma et al. 2014].
Besides, mobile devices possess several sensors that also consume a considerable amount
of energy, such as GPS, accelerometer, and gyroscope. Thus, it is important to understand
where and how the energy is used.

Some experiments presented in [Pathak et al. 2012] confirms that most applica-
tions spend a large amount of energy in I/O components such as Wi-Fi, 3G and GPS.
With the increasing popularity of mobile internet services, wireless data transmission is
becoming a major energy consumer on mobile Internet devices [Tarkoma et al. 2014]. For
example, according to a review from AnandTech6, the Motorola Moto X (2013) device
can be idle for up to 576 hours, but can only maintain up to five hours of data access on 4G
and eight hours on Wi-Fi. In other words, there is a considerable in energy consumption
when keeping the mobile device idle (fully awake without active applications) and when
it is using the wireless Internet connection [Pentikousis 2010].

Wireless communication interfaces such as Wi-Fi and Bluetooth have a dynamic
power demand. They usually have three states: idle, transmitting and receiving which can
be categorized in two different duty cycles, idle and active (transmissions and receptions).
The power consumption on the active state is significantly higher than on the idle state.
The overall power can be optimized by making active states shorter, so mobile devices
could spend most of their time in idle states [Tarkoma et al. 2014] consuming less energy.

4. Mobile Processing and Dynamic Deployment

The Mobile Event Processing Agent (MEPA) is an aditional service that extends the
Mobile Hub (M-Hub) with the capacitity of local processing of the data received
from the Mobile Objects (M-OBJs). Most of the current IoT gateways only care
about the direct transmission of data acquired from the physical environment to the
cloud[Pereira et al. 2013]. But differently from the traditional Internet where data con-
sumption is primarily discrete[Billet and Issarny 2014], IoT deals with a continuous pro-
cessing of data produced by sensors and actuators embedded into M-OBJs. Furthermore,
communication with the cloud is an expensive operation in terms of energy consumption
and network bandwidth which is critical regarding the scalability and the sustainability
required by the IoT. Thus, a recurrent IoT concern is to reduce the amount of information
being sent to the cloud, by detecting and sending only consolidated and pre-processed
data that actually matters to applications, like a sudden increase in the temperature, or an
elevated heart rate.

6http://www.anandtech.com/show/7235/moto-x-review/6

4.1. MEPA Service

Given the need to reduce bandwidth consumption in order to avoid bottlenecks, IoT
should completely decentralize its processing. Nowadays mobile devices have enough
processing power to perform part of the IoT data processing close to the data sources
(M-OBJs). In this context, we believe that Complex Event Processing (CEP) can help
to evaluate streams of sensor data by checking for certain data patterns. Some of these
patterns could be their timestamps and order of occurrence expressed as queries (e.g. con-
secutive temperature events with a value increase). Raw sensor data usually carries only
little semantic information, and hence it needs to be correlated and enriched to gain some
meaning [Dunkel et al. 2013]. Moreover, CEP exhibits characteristics that makes it well
suited for processing in mobile devices: it employs in-memory processing which allows
(near) real-time operations and also the ability to correlate heterogeneous data.

We have included Asper CEP engine [Eggum 2014] in the MEPA Service to pro-
cess any incoming sensor data. It keeps a record of the running CEP rules, and allows to
start and stop them on-the-fly. The sensor data that arrives from M-OBJs are defined as
a primitive event type, which contains the sensor’s names and their respective values (see
Figure 1). As shown in the Figure 2, the MEPA Service is subscribed to all the messages
that are sent from the S2PA and Connection services, since the former collects the data
from the M-OBJs, and the latter receives commands from the cloud to modify the behav-
ior of the MEPA Service itself (e.g. deploy a new CEP rule). Every time an event pattern
is detected (which leads to the generation of a new complex event), it will be published
to any interested component that could be the Connection service, or another rule in the
MEPA Service.

Figure 2. Architecture of the M-Hub with the MEPA Service

CEP rules frequently implement complex correlation functions that sometimes can
be divided into different sets of sub-queries. These sub-queries can perform certain steps
of the correlation separately and provide the results to a root CEP rule in the cloud. For
example, a root CEP rule could be a computational-intensive processing, while the rest of
sub-queries could be simple correlations on collected sensor data [Schmidhäuser 2014].

Since mobile devices collect most of the sensor data, processing these data directly in
them can improve the performance of the system regarding the possible slow network
connections, as well as reducing the device’s energy consumption.

4.2. Dynamic Deployment of CEP Rules
M-Hubs can opportunistically collect data in different environments (e.g. a hospital, a
school) at different moments. Such environments are very likely to have diverse sets of
M-OBJs, which provide sensor data to complete different applications. For example, a
M-Hub in a hospital could interact with temperature, heart rate and accelerometer sensors
attached to the patients. Thus it could detect events such as irregular heart rates, fever,
or even the fall of a person. A completely different scenario could be described for sen-
sors located in the street or a the beach that could help to detect high pollution/radiation
levels, or the average environmental temperature. Due to this flexibility requirement we
included the capability to add/remove CEP rules to/from the M-Hub remotely using the
communication link with the cloud. Depending on the location, CEP rules in the MEPA
Service could be swapped to fit the M-Hub’s current usage context. A software framework
implemented around the MEPA Service translates commands (JSON messages) received
through the Connection Service into specific instructions to modify the CEP rules exe-
cuting in the M-Hub. Such instructions are encapsulated as a MEPAQuery object that
contains information about the type of the request (i.e. add/remove/start/stop/clear) and
the label used to identify the EPL queries. In the case of an add request type, the EPL
query will be also included as a string. Wrong rules specifications or any other exception
that could happen generates an error message that is sent to the server.

5. Performance Experiments and Results
This section describes the experiments and measurements realized over the CEP process-
ing in mobile devices. We tested a prototype running different kinds of CEP rules to
measure the number of actions the M-Hub can perform until the battery level decreases
by 1%, as well as the total bandwidth usage. For all the experiments we used a Motorola
Moto X handheld (model 2013) running Android 4.4.4. Both Android runtimes were
tested, Dalvik and ART7. The devices used as M-OBJs were off-the-shelf SensorTags8,
and the WPAN technology used for communication was BLE. BLE in Android limits the
simultaneous connections to six devices. The type of WLAN used is IEEE 802.11bgn.

To quickly connect with the M-OBJs and avoid that other components affect the
battery life, the M-Hub was configured to not use the Location Service, perform a WPAN
scan every three seconds, and the scan duration was set at two seconds. For the ex-
periments without CEP processing, the time interval in between consecutive sending of
sensor data to the cloud was set to 100ms. Each test sampled the processing and the cloud
communication for one hour with different sets of connected M-OBJs (1, 3, and 6). The
average size of the messages was 200 bytes for events, and 300 bytes for sensor data. Fi-
nally, some external factors that we couldn’t control were present during the experiments,
such as some disconnections of the M-OBJs since BLE is still unstable in Android, and
some processing or Internet communications from other applications that slightly affected
the battery life (e.g. system apps).

7ART and Dalvik - https://source.android.com/devices/tech/dalvik/
8Texas Instruments CC2541 Sensor Tag - http://www.ti.com/lit/ml/swru324b/swru324b.pdf

Table 2. No Processing - Energy and bandwidth consumption
Dalvik 1 3 6

Bandwidth (kb) 7108 20635 42204
Mean time (s) 578.00 512.57 536.17
Std. Deviation 34.77 52.32 7.84

ART 1 3 6
Bandwidth (kb) 7262 19551 37440
Mean time (s) 727.00 629.39 551.60
Std. Deviation 21.85 48.18 13.35

5.1. Filtering Rule

We tested how much energy and bandwidth we could save with a simple CEP filtering
rule. Hence, we created a rule that filtered the information to just temperature data, but
didn’t do any further processing. By filtering data we can successfully reduce the amount
of transferred information, reducing the possibility of a bottleneck. However, it doesn’t
reduce the amount of active states of the network interfaces. As we can see in Table 3,
even when we reduced the total bandwidth usage, the energy consumption is almost the
same as sending all the information to the cloud (see Table 2). Thus, if we can’t reduce
the number of active states for communication, we won’t be able to see big reductions in
the energy consumption.

Table 3. Filtering rule - Energy and bandwidth consumption
Dalvik 1 3 6

Bandwidth (kb) 3146 7178 12682
Mean time (s) 593.60 533.72 488.85
Std. Deviation 39.59 38.72 31.00

ART 1 3 6
Bandwidth (kb) 3210 7045 12865
Mean time (s) 670.40 593.00 530.00
Std. Deviation 32.12 30.36 21.48

5.2. Aggregation Rules

In this experiment we intend to show the energy and bandwidth consumption (see Table 4)
with some rules that included other processing than just filtering, and used different CEP
window types (i.e. sliding and jumping). The scope of a stream is called a window and
defines the lower and upper bounds of the information that is currently seen. Jumping
windows wait until their size n is filled with events to process in a bulk operation all the
data items contained.

Sliding windows have lower and upper bounds that advance with time or as data
items are inserted into the engine. Every time these windows vary, they process all the
data that they contain within their bounds. Their main difference is that jumping windows
will never contain a data item that could have resided in the window before it, while
sliding windows only remove the oldest events [Eggum 2014].

Both window types can be classified as time- and count- based. Time-based win-
dows were used for the tests with one minute of length. The CEP rules filter the data to
process their average value. Only events that contained the average value were sent to the
cloud. The results show that sliding windows don’t reduce the active states of the network
interfaces. However, jumping windows where the frequency of outbound events depends
on the window size, hence bigger windows will decrease the number of active states.

Table 4. Aggregation rules - Energy and bandwidth consumption

Jumping
Bandwidth (kb)
Mean time (s)
Std. Deviation

Sliding
Bandwidth (kb)
Mean time (s)
Std. Deviation

Dalvik
1 3 6

71 102 69
807.50 760.67 719.80
44.58 19.01 34.50

1 3 6
2519 6131 11355

576.33 553.83 490.14
49.31 45.93 26.87

ART
1 3 6

81 105 67
918.00 840.67 824.25
26.89 21.55 22.43

1 3 6
3261 5485 10240

705.67 607.20 582.00
27.43 32.76 26.28

5.3. Rules with Heavy Processing
In the following experiments we tested a more complex processing, in which the magni-
tude of the accelerometer sensors 9 was calculated in a window of time. The accelerom-
eter used can measure acceleration in three directions simultaneously. The magnitude of
the accelerometer was defined as ||a|| =

√
a20 + a21 + a22. Similar configurations as the

previous experiment were used.

Table 5. Heavy processing rules - Energy and bandwidth consumption

Jumping
Bandwidth (kb)
Mean time (s)
Std. Deviation

Sliding
Bandwidth (kb)
Mean time (s)
Std. Deviation

Dalvik
1 3 6

78 148 62
721.20 672.80 649.20
53.10 57.05 31.73

1 3 6
3026 4933 10630

691.00 519.00 480.14
32.79 18.65 31.14

ART
1 3 6

74 105 67
951.46 862.67 728.5
120.97 40.46 29.05

1 3 6
2472 5330 10240

682.00 566.60 491.20
53.76 64.65 11.61

Rules with a more complex processing can consume a reasonable amount of en-
ergy depending on their outbound frequency. Hence, using complex CEP queries in mo-
bile devices could be counterproductive if the events have a high rate of occurrence. Nev-
ertheless, queries like the ones presented in the former experiments (Table 5) can still be
executed if the frequency of outbound events is low enough to compensate the energy
consumption for the processing.

9The accelerometer is a device that measures the acceleration in a specific direction from gravity and
movement.

5.4. Two Rules (Aggregation and Pattern Match)
Here we tested two different rules executing at the same time. The first one processed the
average temperature in a jumping window of 10 seconds, while the second expected four
consecutive temperature values, each one higher than the previous and the first one higher
than 20. In the case of the second rule we don’t have control over the number of outbound
events, since it depends on the sequence of temperature events that fulfill the pattern. This
experiment is intended to show the energy consumption with two rules executing at the
same time. Table 6 presents the energy and bandwidth measurements. Results show that
even if we have two rules, if they have a low rate of outbound events, it is still possible to
reduce the energy consumption in comparison with Table 2.

Table 6. Two rules - Energy and bandwidth consumption
Dalvik 1 3 6

Bandwidth (kb) 258 389 298
Mean time (s) 750.25 733.25 789.50
Std. Deviation 26.86 20.22 52.67

ART 1 3 6
Bandwidth (kb) 270 326 264
Mean time (s) 895.00 814.67 867.00
Std. Deviation 16.09 37.00 10.44

5.5. Discussion
The experiments show that in most of the cases the MEPA service can significantly de-
crease the energy and bandwidth consumption compared with sending all the data to the
cloud. Moreover, the results indicate that CEP jumping windows rules are better suited
to be executed on mobile devices than sliding windows, since sliding windows impose
a significant use of CPU, and have a high rate of outbound events. If the data produced
by sliding windows is directly send to the cloud, it will generate a significant use of the
Internet connection.

Nevertheless, it is also possible to use the output of the CEP rules that use sliding
windows as the input for another rule X in the MEPA Service. In such case, if the rule
X is the one that communicates with the cloud and can significantly reduce the outbound
frequency, energy consumption can still be reduced. Moreover, the bigger the size of the
jumping windows, the more energy consumption that can be reduced. Since it will allow
to increase the time the network interface remains in idle state. In the case of pattern
match rules, we have no control over the amount of generated events, thus the expected
frequency of the pattern will determine if they are suitable as mobile processing.

We can conclude that the impact of having one or more rules depends on the
frequency of detected events. Hence, local processing should as much as possible reduce
the frequency and the number of message transmissions to the cloud. However, if the
complexity of the processing is high, and the probing of the sensor data transmission is
infrequent, then sending them to the cloud could be better (but only as bulk messages
with many sensor data). In the results we can also see that using ART the decrease of
energy is mitigated. The use of ART also resolves many performance related issues that
was previously seen with Dalvik[Eggum 2014].

6. Related Work

Several works in both industry and academia propose the use of average Things (mod-
erately powerful Things) as the enablers of the Internet of Things (IoT). These de-
vices could act as temporary IP routers and opportunistic context providers for simpler
Things. Nevertheless, only recent works concern about the amount of transferred data
and energy consumption on the IoT-gateways that are usually energy-constrained devices.
[Billet and Issarny 2014] let the sensor networks perform as much in-network processing
as possible before sending any data to a proxy or the cloud. However, in-network process-
ing should be restricted to low-latency operations and depends on the available resources
in the current location of the IoT-gateways.

[Stipkovic et al. 2013, Dunkel et al. 2013] propose the use of Complex Event Pro-
cessing (CEP) directly in mobile devices, and avoids the use of the cloud. They reduce
transmission traffic, save resources, and private data remains only on the mobile devices
(e.g. GPS). However, it can’t handle situations where a global view of the data is re-
quired, for example aggregation of data obtained from different mobile devices in dif-
ferent geographic locations. [Govindarajan et al. 2014] introduce a new approach where
CEP processing is distributed among edge nodes (e.g. wireless sensors, smartphones) and
the Cloud (VMs). The pipeline of queries is represented by a graph, where the vertices are
the sets of queries, and the edges the event streams that connect the output of a query to
the input of the next query. Their proposal only covers the architecture and representation
of the queries. They don’t consider a dynamic deployment of CEP rules, nor have any
evaluation (energy/bandwidth) over the system.

[Chen et al. 2014] propose an architecture for distributed CEP to meet the needs
of real-time streaming of information processing. Their approach is based on static
environments where gateways are always connected to the same devices. It doesn’t
provide support for mobile IoT, where gateways can be moved to different environ-
ments (e.g. hospital, university), and thus be connected with different sets of sensors.
[Stojanovic et al. 2014] propose a system that provides an adaptation of CEP Rules. To
achieve this, they propose a context-aware (resources, situation) system, which will dy-
namically deploy/un-deploy rules to the mobile devices or server. By doing this, better
recommendations will be send, better actions will be taken and battery will be saved, since
it won’t be necessary to have unused rules running on the mobile devices. The problem
is that they still send all the information to the server in order to increase their complex
knowledge (historical data), moreover they only cares about situations related to health
and fitness.

In the work of [Kim et al. 2009], they make use of the DDS (Data Distribution Ser-
vice) to exchange data/events (sensor data) among nodes, and use CEP (Complex Event
Processing) to create useful information to the users. First data is collected from various
devices (publishers, e.g. sensors, gps, cameras) and transmitted to each user (subscribers,
e.g. pda, smartphone) through the DDS network. The data is processed in each mobile
device depending on the user’s demands and delivered to the different applications. CEP
rules can be changed depending on the requirements of the applications. Nevertheless,
they don’t consider that the mobile devices can act as data sources and node processors at
the same time. Saleh et al. [Saleh and Sattler 2013] solution proposes to distribute CEP
rules to the network as a graph, where each node will communicate with each other using

pub/sub. A sensor catalog makes possible to find information about the different sensor
devices, such as the computational power, memory size, communication cost and avail-
able sensors that will be used at the moment of decide which CEP rules will go to which
nodes, or to the server.

Although there are many approaches that try to include CEP in mobile devices,
they don’t explore its capacity for re-configuration. Moreover, none of the previous works
provides a benchmark about the energy/bandwidth consumption of the use of CEP in
mobile devices, which are some of the most important aspects to consider when including
processing in IoT sensor-gateways.

7. Conclusion

We have presented an IoMT sensor gateway with dynamic local processing of sensor data
using conventional smartphones. In fact, the popularity and characteristics of CEP, such
as its on-the-fly reconfiguration and fast detection of events, led us to use it for the local
processing on mobile devices. Using a prototype implementation and BLE SensorTag
devices we did performance experiments that measured and compared the energy and
bandwidth consumption between sending all the sensor data, and only pre-processed data
to the cloud. The results obtained from these initial experiments are quite encouraging
and show that CEP rules that represent events with a low frequency of occurrence are
more adequate for mobile devices.

In spite of the encouraging preliminary results, we are aware that our current pro-
totype is only ”scratching the surface of IoMT”, and much interesting research, software
development and applications can be derived from this work. In particular, our future
work includes: a way for balancing the CEP processing among cloud and mobile nodes,
investigate the problems and possible approaches inter- M-Hub handover protocols aim-
ing to deliver detected events, in case a M-Hub is unable to establish an Internet con-
nection. Moreover, we also plan to study means of sending commands to M-OBJs with
actuators, and thus support any Internet-wide remote control of smart things, such as
home appliances where an event can start an action locally without the need to sent any
information to the cloud.

Acknowledgements

The Mobile Hub project is supported by the PUC-Rio Microsoft Open Source Alliance,
and partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES).

References

Billet, B. and Issarny, V. (2014). Dioptase: a distributed data streaming middleware for
the future web of things. volume 5. Springer London.

Chen, C. Y., Fu, J. H., Sung, T., Wang, P.-F., Jou, E., and Feng, M.-W. (2014). Complex
event processing for the internet of things and its applications. In Automation Science
and Engineering (CASE), 2014 IEEE International Conference on, pages 1144–1149.

daCosta, F. (2013). Rethinking the Internet of Things. Apress.

Dunkel, J., Bruns, R., and Stipkovic, S. (2013). Event-based smartphone sensor process-
ing for ambient assisted living. In Autonomous Decentralized Systems (ISADS), 2013
IEEE Eleventh International Symposium on, pages 1–6.

Eggum, M. (2014). Smartphone Assisted Complex Event Processing. dissertation, Uni-
versity of Oslo.

Govindarajan, N., Simmhan, Y., Jamadagni, N., and Misra, P. (2014). Event processing
across edge and the cloud for internet of things applications. In Proceedings of the 20th
International Conference on Management of Data, pages 101–104. Computer Society
of India.

Kim, D., Lee, J. H., Cheol, R., Jo, J. C., and You, Y. D. (2009). Embedded cep engine used
in dds-based mobile devices for differentiated services for customers. In Consumer
Electronics, 2009. ISCE ’09. IEEE 13th International Symposium on, pages 645–646.

Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with eprof. In Proceedings of the 7th
ACM European Conference on Computer Systems, pages 29–42.

Pentikousis, K. (2010). In search of energy-efficient mobile networking. In Communica-
tions Magazine, IEEE, pages 95–103.

Pereira, P. P., Eliasson, J., Kyusakov, R., Delsing, J., Raayatinezhad, A., and Johansson,
M. (2013). Enabling cloud connectivity for mobile internet of things applications. In
Proceedings of the 2013 IEEE Seventh International Symposium on Service-Oriented
System Engineering, SOSE ’13, pages 518–526, Washington, DC, USA. IEEE Com-
puter Society.

Saleh, O. and Sattler, K.-U. (2013). Distributed complex event processing in sensor net-
works. In Mobile Data Management (MDM), 2013 IEEE 14th International Confer-
ence on, volume 2, pages 23–26.

Schmidhäuser, S. (2014). Dynamic Operator Splitting in Mobile CEP Scenarios. PhD
thesis, University of Stuttgart.

Stipkovic, S., Bruns, R., and Dunkel, J. (2013). Pervasive computing by mobile complex
event processing. In e-Business Engineering (ICEBE), 2013 IEEE 10th International
Conference on, pages 318–323.

Stojanovic, N., Stojanovic, L., Xu, Y., and Stajic, B. (2014). Mobile cep in real-time
big data processing: Challenges and opportunities. In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, pages 256–265. ACM.

Talavera, L., Endler, M., Vasconcelos, I., Vasconcelos, R., Cunha, M., and
Da Silva E.Silva, F. (2015). The mobile hub concept: Enabling applications for the
internet of mobile things. In Pervasive Computing and Communication Workshops
(PerCom Workshops), 2015 IEEE International Conference on, pages 123–128.

Tarkoma, S., M., S., E., L., and Y., X. (2014). In Smartphone Energy Consumption:
Modeling and Optimization.

