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Abstract. Optimizing wireless systems with Multiple Input Multiple Output
(MIMO) by means of Radio Resource Allocation (RRA) in general requires very
complex algorithms. In this work, we revisit two Radio Resource Allocation
(RRA) problems in this scenario: Unconstrained Rate Maximization (URM) and
Constrained Rate Maximization (CRM). In order to optimally solve those prob-
lems it is necessary to list all possible Space Division Multiple Access (SDMA)
groups combinations and calculate the transmit and receive filters of the termi-
nals for each combination. The main proposal in this work is to decrease the
complexity of the RRA solutions at the cost of a controlled performance degra-
dation by selecting only a fraction of all possible SDMA groups.

1. Introduction

The advantages of Multiple Input Multiple Output (MIMO) technology over single an-
tenna systems have become apparent to wireless research community mainly after the
seminal works of Foschini [Foschini 1996] and Alamouti [Alamouti 1998] at the end of
1990’s. Almost twenty five years later, MIMO technology have become mandatory in
modern communication standards such as Long Term Evolution (LTE)-Advanced and
Worldwide Interoperability for Microwave Access (WiMAX) [Li et al. 2010].

The MIMO technology together with Orthogonal Frequency Division Multiple
Access (OFDMA) can be used to obtain gains over single antenna systems in transmit data
rate, bit error rates and co-channel interference mitigation [Mietzner et al. 2009]. Mul-
tiuser (MU) MIMO schemes, also known as Space Division Multiple Access (SDMA),
consist in the use of multiple antennas to enable the allocation of different spatial sub-
channels to different terminals in the same time-frequency resource [Gesbert et al. 2007].
In this case, the spatial dimension can be used as another tool to exploit the multiuser
diversity.

The joint use of MIMO and Radio Resource Allocation (RRA) is a relevant strat-
egy to deal with the challenges of next generation of cellular networks. However, the
MU MIMO capability turns the RRA problems even more challenging due to the added
degree of freedom and, therefore, requires computationally expensive solutions. In this
work we revisit two RRA problems in MU MIMO scenario: Unconstrained Rate Max-
imization (URM) and Constrained Rate Maximization (CRM) [Lima et al. 2014]. An



important problem in the literature is the total data rate (sum rate) maximization or
URM. The achievable sum rate capacity for the multi-antenna downlink channel has been
found in [Caire and Shamai 2003] while [Tejera et al. 2006] shows how that sum rate
capacity can be found using a non-linear processing technique called Dirty Paper Cod-
ing (DPC) [Costa 1983]. However, obtaining the optimal transmission policy when em-
ploying DPC is a computationally complex non-convex problem. Motivated by this, linear
processing at the transceivers has been adopted due to the good achieved performance-
complexity trade off [Ho and Liang 2009]. The Block Diagonalization (BD)-Zero Forc-
ing (ZF) strategy is a linear filtering scheme capable of spatially multiplexing multiple
terminals in the same frequency resource in a MU-MIMO [Spencer et al. 2004]. As will
be shown later, in order to obtain the optimal solution of the URM problem when lin-
ear spatial filtering is used, we need to calculate the transmit and receive filters of the
terminals of all possible SDMA group combinations in all available frequency resources.

Although URM solution achieves the maximum spectral efficiency, it is unfair
which leads to service starvation to terminals with unfavorable channel conditions. The
total data rate maximization subject to satisfaction constraints or CRM has been con-
sidered in [Lima et al. 2014]. The objective of CRM is the same as the URM problem,
however, the former assumes a multiservice scenario where each terminal is assumed to
be transmitting or receiving data from a multimedia service, e.g., Voice over IP (VoIP) or
web browsing. Therefore, besides maximizing the total transmit data rate, the resource
assignment should guarantee that a minimum number of terminals of each service is satis-
fied with the provided Quality of Service (QoS). In order to obtain the optimal solution of
CRM problem, the authors have shown that the original non-linear optimization problem
can be converted to an Integer Linear Program (ILP) and then solved by Branch-and-
Bound (BB)-based algorithms [Nemhauser and Wosley 1999]. However, as in the URM
problem, the linear spatial filters at the transmitter and receiver of all terminals in all pos-
sible SDMA groups and frequency resources should be pre-calculated. This operation is
computationally intense for both URM and CRM problem:s.

The main contribution of this article is the proposal of methods to pre-select a
fraction of all possible SDMA groups based on simple and reasonable metrics reducing
the problem size proposed in [Lima et al. 2014]. The selected SDMA groups will be used
in the solutions of the URM and CRM problems. With this approach, only the spatial
filters for the terminals of the selected SDMA groups should be calculated. Besides sav-
ing the computational task of calculating filters of terminals in some SDMA groups, the
solutions of the URM and CRM problems will have their computational complexity de-
creased. The main contributions of this work are: Proposal of a framework to reduce the
computational complexity to obtain the optimal solutions of problems URM and CRM;
Proposal of metrics to measure the relevance of SDMA groups; Performance evaluation
of the proposed framework and grouping metrics; Calculation of the computational com-
plexity of the solutions to URM and CRM problems with our proposed framework.

The remainder of this article is organized as follows. In section 2, we provide the
system model and main assumptions. The proposed solution to decrease the computa-
tional complexity is presented in section 3 and performance results based on simulations
are shown in section 4. Finally, the main conclusions and perspectives are depicted in
sections 5.



2. System Modeling

2.1. Definitions and variables

Most of the system scenario and variables are similar to the ones presented
in [Lima et al. 2014]. Basically, we assume RRA in the downlink of a given cell of an
OFDMA cellular system. The minimum allocable resource, or Resource Block (RB),
consists in a group of one or more adjacent subcarriers and a number of consecutive Or-
thogonal Frequency Division Multiplexing (OFDM) symbols in the time domain, which
represents the Transmission Time Interval (TTI). We assume a MU MIMO scenario with
My and Mp antennas at the Base Station (BS) and terminals, respectively. There are J
terminals in the considered cell and N available RBs. 7 and N are the set of available
terminals and RBs, respectively. As the CRM problem assumes a multiservice scenario,
we consider that each terminal is using a service s € S, e.g., web browsing or file down-
load, where S is the set of all services. The set of terminals using service s is given by
Js. The number of terminals from service s is | J;| = Js.

The MIMO channel of the link between the BS and terminal j on RB n is modeled
by the matrix H;,, that is composed of the elements A, .5 that represents the channel
transfer function between the ™" receive antenna of terminal j and the b™ transmit antenna
of the BS on RB n. The maximum number of orthogonal spatial subchannels that can
be used per RB in the considered cell is min (J Mg, Mr). The Figure 1 is a scenario
representation in which there are two terminals with two receiver antennas each and 4
transmission antennas in the BS.

Terminals

Base Station

€444
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e
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Figure 1. Transmission between a BS with 4 antennas and two terminals with 2
antennas.

We define SDMA group as a set of terminals spatially multiplexed in a given RB.
Assuming, for example, three terminals and My = Mp = 2, the possible SDMA groups
that can be built are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}. In this sense, G consists in a
set with the indices of all SDMA groups that can be built. The group {1,2,3} cannot
be considered because it has more terminals than antennas in the BS. In the previous
example, the cardinality of G is G = 6. Assume that G, is the set with the terminal’s
indices of the selected SDMA group assigned to RB n. The symbols to be transmitted



to terminal j € G, are filtered by a transmit matrix M;,, whereas at the receiver they
are filtered by a receive matrix D, ,,. Note that c;,, is the number of streams transmitted
to terminal j on RB n where ¢;,, < min (Mr, Mg, v;,), whereas v;, is the rank of the
channel matrix H; ,,. Therefore, the input-output relation for the MIMO channel is given
by

bj. =Djnbjn = a;D;,H;,,M;,b;,+

aij,nHj,n Z (Mi,nbi,n)+Dj7nnj77“ (1)
1€Gn, iF]

where Bj,n and Bjm are the prior-filtering and the post-filtering received signal vector
of terminal j on RB n, respectively, b;,, is the transmit signal vector of terminal j on
RB n, n;, is the white Zero Mean Circularly Symmetric Complex Gaussian (ZMCSCG)
noise vector of terminal j on RB n, and «; represents the joint effect of the path loss and
shadowing.

The Signal to Interference plus Noise Ratio (SINR) of the /™" stream of terminal j
on RB n, 7, ,, 18 given by

I /agd,  H; M b 13

Vind = 2)
G g, iy Minbin) +df 13
where d’ , is the I row of matrix D, and || - ||» denotes the 2-norm of a vector. We

assume that the transmit power is fixed and equally distributed among the spatial sub-
channels.

Consider that the BS employs a link adaptation functionality that selects the best
Modulation and Coding Scheme (MCS). Note that the choice of the best MCS depends
on the channel transfer function as well as on the prior knowledge of the transmit and
receive filters. Assuming that the chosen SDMA group for RB n, G, corresponds to the
g™ SDMA group in G, the total transmit data rate of terminal j that belongs to the g™ € G
SDMA group is given by

Tgjn = Z f (Vima) s (3)

Vleﬁj’n

where f (-) represents the link adaptation function and £, is the set of spatial subchan-
nels of terminal 7 on RB n.

We define X as an assignment matrix with binary-valued elements z,,, that as-
sume 1 if SDMA group g € G is assigned to RB n € N/, and 0 otherwise. Let O be a
binary matrix with elements o, ; that assume 1 if terminal j belongs to SDMA group g,
and 0 otherwise. We assume that at the current TTI, terminal j has a data rate requirement
equal to ¢;, that a minimum of k, terminals should be satisfied for service s and that the
indices of the terminals in 7, ; », 04 ; and in ¢; are sequentially disposed according to the
service i.e., the flows from j = 1 to j = J; are from service 1, flows from j = J; + 1 to
j = Ji + Js are from service 2, and so on.



2.2. BD-ZF

BD-ZF is a spatial filtering scheme whose main idea is to provide transmit and receive
filters that enable to simultaneously transmit to multiple terminals in the same frequency
resource (MU MIMO) without multi-user interference [Spencer et al. 2004]. It is a gen-
eralization of ZF precoding scheme for multi-antenna terminals in which multi-user inter-
ference is eliminated by projecting the signal of each terminal onto the kernel of the joint
null space of the channels of all other terminals sharing the same RB. For more details,
the interested reader can see [Spencer et al. 2004, Lima et al. 2014].

The dominant operation in the BD-ZF algorithm is the Singular Value Decompo-
sition (SVD) performed on each terminal’s channel matrix. According to [Bjorck 1996],
the worst-case computational complexity when the SVD decomposition is applied in a
matrix with dimension Mp x My is O (2MpM?2 + 4M3). Assuming that the SDMA
group has J' terminals, the SVD is applied on the J’ channel matrices and, therefore, the
worst-case computational complexity is O (J'2Mp M2 + J'4M3).

2.3. URM problem and solution

According to the definitions presented before the URM problem can be formulated as
follows [Lima et al. 2014]:

S (Z DD Tan O Tg,j,n> : (4a)

9eG neN jeJ
subject to
S tgn=1, VneEN, (4b)
g€y
zyn € {0,1}, Vge GandVn e N. (4¢)

The objective function shown in (4a) is the total downlink data rate transmitted
by the BS. The two constraints (4b) and (4c) assure that an RB will not be shared by
different SDMA groups. The optimal solution of URM problem can be found according
to the following steps:

1. Calculate 7 ; ,. In order to do that, we need to find the transmit and receive filters
according to BD-ZF of all terminals for all possible SDMA groups and RBs;

2. For each RB, independently select the SDMA group with maximum total data
rate, i.e., the SDMA group whose sum of the terminals’ data rate is maximum.

Assuming that the estimated data rates r, ;,, are already calculated, i.e., the BD-
ZF solution was already applied, the dominant operation of the optimal solution of URM
problem is the computation of the total data rate of each SDMA group on each RB. Ac-
cording to the section 2.1, the maximum number of terminals in an SDMA group is lim-
ited by Mp. Therefore, the worst-case computational complexity of the optimal solution
of the URM problem is O (GN Mr).



2.4. CRM problem and solution

According to [Lima et al. 2014], the CRM problem formulation is the same as the URM
presented in (4) with the additional constraint that follows:

Zu(Z Z Lgn OgiTgjms tj> >ks, Vs €S, Q)

JETs ge€G neN

where u(z, ) is a step function at /5 that assumes the value 1 if x >  and 0 otherwise.
Constraint (5) states that a minimum number of terminals should be satisfied for each
service.

The optimal solution of CRM problem was described in [Lima et al. 2014]
where it was formulated as ILP that can be optimally solved by BB-based algo-
rithms [Nemhauser and Wosley 1999]. Note that, as in the URM solution, it is necessary
to calculate 7, ;,, to solve the CRM problem. Therefore, we need to find the transmit
and receive filters according to BD-ZF of all terminals for all possible SDMA groups and
RBs. Assuming that the estimated data rates r, ; , are already calculated, the worst-case
complexity of the optimal solution of the CRM problem is O (QGN ) [Lima et al. 2014].

3. SDMA Group Selection Framework

Our main idea is to reduce the number of SDMA groups used in the solutions. In other
words, we intend to select p G SDMA groups to be used to calculate the optimal solutions
of URM and CRM problems where 0 < p < 1.

Figure 2 shows a flowchart of the proposed framework. In step (1) we should
identify all possible SDMA groups that can be composed. Then in step (2) we calculate
the estimated Signal-to-Noise Ratio (SNR) of each link BS-terminal on all RBs as follows:
_ Plhy,)?
f)/jmz - NO
average noise power in the bandwidth of an RB and h;,, consists in the mean of the
elements of matrix H;,,. The average SNR is used in step (3) where we calculate a mean
datarate, ; ,, of terminal j on RB n. This mean data rate is obtained by the link adaptation
lookup tables that map SNR regions to MCSs. The calculated data rate for each terminal
j on each RB n is used in step (4) to calculate the SDMA grouping metric (see later).
Then, in step (5) we select the p G SDMA groups on each RB n with higher values for
the considered metric. The remaining steps are present in the original solutions of URM
and CRM problems in [Lima et al. 2014]. In step (6), the spatial filters are calculated for
the selected SDMA groups in step (5). In step (7), the spatial filters are used to calculate
the transmit data rate of each terminal j when belonging to the SDMA group g on RB n,
T4.5m- Those data rates are input to the solutions of problems URM and CRM in step (8).

, where P is the transmit power per spatial subchannel (fixed), /V, is the

In this work we propose and evaluate different metrics to be used in step (4).
Assume hereafter that 7, consists in the set of terminals that belongs to the g™ SDMA
group. The considered metric for the g™ SDMA group on RB n, m,,, is presented in
Table 1.

The proposed metrics explore the mean data rates considering the SNR and num-
ber of terminals, which are variables that cause impact in the performance of group. The
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Figure 2. Flowchart of the proposed framework for solution of URM and CRM

problems.
Table 1. Metrics for SDMA group selection.
Name Equation Comments
MEAN RATE Mg.n = Zj 7 Tin Priority to SDMA groups with higher total transmit data rate
g
. _ Priority to SDMA groups with balanced terminal
MAX MIN RATE Mg,n =min,_ 7 (7j,n) ) ) o
) A data rates or with a fair data rate distribution
1 > €T, Tin Variant of MEAN RATE that prioritizes the
SMALL GROUP MEAN RATE Mmgn = ——=——
| Tg| SDMA groups with small number of terminals
minjejg () Variant of MAX MIN RATE that prioritizes
SMALL GROUP MAX MIN RATE = mgn = ———=—— . )

| Tg| the SDMA groups with small number of terminals

mean rate translate the channel quality. The number of terminal measures the spatial
interference which degrades the channel quality.

For comparison purposes, we also consider a random scheme (RANDOM) where
the choice of the p G SDMA groups is done at random. With exception of the RANDOM
strategy, the dominant operation in the computational complexity of the proposed selec-
tion metrics is the calculation of the average channel quality that requires O (MgMr).
This operation is repeated for each terminal within the SDMA groups. As the number of
terminals in an SDMA group is limited by M7 and the metric should be calculated for all
SDMA groups on each RB, the worst-case computational complexity is O (GN M2ME).
Note that in some systems, an average wideband channel quality is already available and
therefore, the complexity of this step is reduced to O (GN Mr).

4. Performance Results

'l | represents the cardinality of a set.



Table 2. Main simulation parameters considered in the performance evaluation.

Parameter [ Value [ Unit
Cell radius 334 m
Transmit power per RB 0.8 w
Number of subcarriers per RBs 12
Number of RBs 10
Shadowing standard deviation 8 dB
Path loss 2 35.3 + 37.6 - logy (d) dB
Noise spectral density 3.16-1020 W/Hz
Number of snapshots 3000 -
Antenna configurations Mg X Mt 2%xX2,4x4and6 X 6
MIMO channel model Classical IID
Number of services 2
Number of terminals per service 3
Required minimum number of 2
satisfied terminals per service

4.1. Simulation parameters

In this section we present the main assumptions that were considered for the performance
evaluation of the proposed framework by means of computational simulations. We as-
sume that the terminals are uniformly distributed in the cell coverage area. The links
between BS and terminals are impaired by distance dependent path loss, lognormal shad-
owing and Independent and Identically Distributed (IID) Rayleigh-distributed fast fading.
An RB consists of 12 subcarriers and 14 consecutive OFDM symbols [Lima et al. 2014].
We assume perfect Channel State Information (CSI) at the transmitter and receiver. We
highlight here that CSI estimation is out of the scope of this work and the algorithms and
methods proposed here do not rely on these aspects. Naturally, we expect that the absolute
performance of the studied algorithms could be degraded when imperfect CSI estimation
is present.

The simulations are organized by means of snapshots, where in a snapshot an
RRA solution is provided. In every new snapshot, new independent samples of random
variables are generated for channel state and other parameters of the model. The number
of snapshots was chosen so as to assure statistical confidence of the presented results. We
assume that the link adaptation is performed based on the report of 15 discrete Channel
Quality Indicators (CQIs) used by the LTE system [Lima et al. 2014]. The Signal to Noise
Ratios (SNRs) thresholds for MCS switching used here were the same ones employed
in [Lima et al. 2014]. The main simulation parameters are shown in Table 2.

The ILP problems were solved using IBM ILOG CPLEX Optimizer [IBM 2009].
In the plots, we call “Original solution” the optimal solution of the CRM or URM prob-
lems that considers all possible SDMA groups. When the performance metrics are con-
cerned, we consider two main ones: outage rate and total data rate. An outage event
happens when an algorithm cannot manage to find a feasible solution for CRM problem,
1.e., the algorithm does not find a solution fulfilling the constraints of CRM problem. Out-
age rate is defined as the ratio between the number of snapshots with outage events and
the total number of simulated snapshots. Therefore, this performance metric shows the
capability of the algorithms in finding a feasible solution to CRM problem. The outage

2 is the distance between the base station and the terminal in meters.
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Figure 3. Outage rate versus required data rate with the optimal solution of the
CRM problem with p = 1 (all SDMA groups are selected) and p = 0.6 for different
metrics.

rate is meaningless for URM problem. The total data rate is the sum of the data rates
obtained by all the terminals in the cell in a given snapshot. This metric is suitable for
both URM and CRM problems. Finally, increments in the offered load are emulated by
increasing the data rate requirements of the terminals.

4.2. Simulation Results

In Figures 3 and 4 we can see the outage rate versus the required data rate per terminal
for the proposed framework with different proportion of selected groups: 60% and 30%,
respectively. Let p the groups percentage considered in the problem. The objective is
to compare the performance of the original solution of CRM problem where all SDMA
groups are considered (p = 1), and the solutions using our proposed framework with
different values of p with the metrics presented in section 3. As expected, the solution
with p = 1 presents the best performance in terms of outage since it has more options
of SDMA groups per RB in order to find an RRA solution that satisfies the problem
constraints.

The worst performance in Figures 3 and 4 is achieved by the MEAN RATE met-
ric. This metric selects the SDMA groups with higher mean data rate. Therefore, it is
expected that most of the selected SDMA groups will be composed of the terminals with
better channel qualities. Consequently, the RRA solution does not have many options to
find feasible associations between RBs and SDMA groups that contain the other terminals
in medium and poor channel states leading to a higher outage rate. The second worst per-
formance is achieved with the RANDOM metric. Basically, this metric does not consider
any information of terminals or channel states in order to select the SDMA groups.
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Figure 4. Outage rate versus required data rate with the optimal solution of the
CRM problem with p = 1 (all SDMA groups are selected) and p = 0.3 for different
metrics.

In both figures we can see that the SMALL GROUP MEAN RATE metric presents
better performance than MEAN RATE metric. This metric SMALL GROUP MEAN
RATE gives more opportunities to select terminals in medium and poor channel states
since the data rate is not the unique factor to be considered. Focusing on Figure 3 we
can see that the metrics MAX MIN RATE and SMALL GROUP MAX MIN RATE per-
form almost optimally. This means that the proposed framework achieves a practically
optimal solution selecting only 60% of the SDMA groups. In Figure 4, we can observe
again that the MAX MIN RATE and SMALL GROUP MAX MIN RATE present the best
performance. By choosing the SDMA groups with maximum worst terminal data rate,
those metrics are capable of providing a small and acceptable degradation in performance
even when only 30% of the SDMA groups are considered. In particular, the SMALL
GROUP MAX MIN RATE has the advantage of selecting SDMA groups with small size
and therefore, the computational complexity of spatial filter calculation is reduced. It is
worth of mentioning that all metrics present reduced performance loss compared to the
solution with p = 1 as we increase the value of p. This can be seen by comparing Figures
3 and 4.

In Figure 5 we present the Cumulative Distribution Function (CDF) of the total
data rate for the same scenario of Figure 4 when the required data rate per terminal is
6 Mbps. The samples used in the CDFs were taken from the snapshots in which all
solutions managed to find a feasible solution, i.e., there is no outage. We can see that the
solution with p = 1 presents the best performance, as expected. The poor performance
of the RANDOM metric is due its unawareness regarding channel state information as
explained before. All other metrics presents a similar performance with a loss in the 501
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Figure 5. CDF of total data rate for the data rate requirement of 6 Mbps with the
optimal solution of the CRM problem with p = 1 (all SDMA groups are selected)
and p = 0.3 for different metrics.

percentile of only 1% compared to the original solution. Although it is not shown here,
the performance loss of the proposed metrics are decreased as the terminals’ required data
rate is reduced.

In Figure 6 we present the mean of the total data rate for URM problem consid-
ering p = 0.3. As we can see in this figure, selecting only 30% of the SDMA groups for
solution does not lead to significant performance losses compared to the original solution.
Therefore, we will have an acceptable loss for a large reduction of groups. The exception
is the RANDOM metric that presents a loss of 1.5 Mbps in the mean of the total data
rate compared to the solution with p = 1, a reduction only 4%. The others metrics don’t
have loss greater than 0.7 Mbps. This performance is achieve because the problem don’t
have QoS restrictions. Users with good channel state will receive many RB, making easy
increase the global rate.

In the following we provide some comments about the computational complexity
of the studied solutions. When a fraction p of GG possible groups is selected, we need
to calculate the spatial filters of the terminals of only pG SDMA groups in the proposed
framework for each RB. On the other hand, the original solution should calculate the spa-
tial filters of the terminals of all G possible SDMA groups for each RB. According to the
computational complexity of the BD-ZF presented in section 2.2, the proposed framework
avoids the calculation of approximately NG (1 — p) MrM23 + NG(1 — p) M3} operations
compared to the original solution assuming that the maximum number of terminals in
an SDMA group is M. Note that the complexity to calculate the metrics of all SDMA
groups is a polynomial with order lower than the calculation of all the spatial filters with
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Figure 6. MEAN of total data rate with the optimal solution of the URM problem
with p = 1 (all SDMA groups are selected) and p = 0.3 for different metrics.

BD-ZF as shown in section 3.

Besides, the reduction in computational complexity is also present in the optimal
CRM and URM solutions. As it was shown in section 2.4, the complexity of the original
solution of CRM problem is O (2GN ) and with the proposed framework is O (QPGN )
The worst-case complexity of the original solution of URM problem is O (GN Mr) and
with proposed framework is O (pGN Mr).

The presented results in this section have shown that significant computational
work can be saved by selecting only a fraction of the possible SDMA groups when solving
the CRM and URM problems. This selection should be done with the help of some of the
metrics proposed in this work. In particular, the SMALL GROUP MAX MIN RATE has
shown to be effective for both problems.

5. Conclusions and Perspectives

Although Radio Resource Allocation (RRA) algorithms applied in Multiple Input Multi-
ple Output (MIMO) systems can lead to important performance gains, they are in general
very complex and impose a high computational burden. Therefore, strategies that de-
crease the computational complexity with low performance loss are welcome. In this
work we revisited the Constrained Rate Maximization (CRM) and Unconstrained Rate
Maximization (URM) problems. In order to obtain the optimal solution of those prob-
lems, it is needed to list all possible Space Division Multiple Access (SDMA) groups and
calculate the transmit and receive filters of the terminals. Our proposed was to select only
a fraction of all the possible SDMA groups based on specific metrics based on Channel
State Information (CSI) in order to solve CRM and URM problems. Accordingly, there
is an overall computational complexity reduction compared to the original solution.

By computer simulations, we have shown that some of the proposed selection



metrics are capable of providing a small performance degradation compared to the origi-
nal solution even when only 30% of the possible SDMA groups are selected. Therefore,
the proposed framework is capable of achieving a good performance-computational com-
plexity trade off. As the proposed framework is a flexible and general, we point out as
perspectives the study of the proposed framework on other RRA problems for MIMO
systems.

Acknowledgment

This work was supported by the Innovation Center Ericsson Telecomunicacdes S.A.,
Brazil, under EDB/UFC.30 Technical Cooperation Contract. The student Liszlon R.
Costa would like to thank the FUNCAP for his financial support.

References

Alamouti, S. (1998). A Simple Transmit Diversity Technique for Wireless Communica-
tions. IEEE Journal on Selected Areas in Communications, 16(8):1451-1458.

Bjorck, A. (1996). Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics.

Caire, G. and Shamai, S. (2003). On the Achievable Throughput of a Multiantenna Gaus-
sian Broadcast Channel. [EEE Transactions on Information Theory, 49(7):1691 —
1706.

Costa, M. (1983). Writing on Dirty Paper. IEEE Transactions on Information Theory,
29(3):439 — 441.

Foschini, G. J. (1996). Layered Space-Time Architecture for Wireless Communication
in a Fading Environment when Using Multi-Element Antennas. Bell Labs Technical
Journal, 1(2):41-59.

Gesbert, D., Kountouris, M., Heath, R. W., Chae, C.-B., and Salzer, T. (2007). Shifting
the MIMO Paradigm. IEEE Signal Processing Magazine, 24(5):36 —46.

Ho, W. W. L. and Liang, Y.-C. (2009). Optimal Resource Allocation for Multiuser MIMO-
OFDM Systems with User Rate Constraints. /IEEE Transactions on Vehicular Technol-
0gy, 58(3):1190-1203.

IBM  (2009). IBM ILOG CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/. Accessed:  12-
09-2015.

Li, Q., Li, G., Lee, W,, Lee, M., Mazzarese, D., Clerckx, B., and Li, Z. (2010). MIMO
Techniques in WiMAX and LTE: a Feature Overview. 48(5):86-92.

Lima, F. R. M., Maciel, T. F,, Freitas, W. C., and Cavalcanti, F. R. P. (2014). Improved
Spectral Efficiency with Acceptable Service Provision in Multi-User MIMO Scenarios.
IEEE Transactions on Vehicular Technology, 63(6):2697-2711.

Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., and Hoeher, P. A. (2009).
Multiple-Aantenna Techniques for Wireless Communications - A Comprehensive Lit-
erature Survey. IEEE Communications Surveys Tutorials, 11(2):87-105.



Nemhauser, G. and Wosley, L. (1999). Integer and Combinatorial Optimization. Wiley-
Interscience, New York, NY, USA, Ind edition.

Spencer, Q. H., Swindlehurst, A. L., and Haardt, M. (2004). Zero-Forcing Methods for
Downlink Spatial Multiplexing in Multiuser MIMO Channels. /IEEE Transactions on
Signal Processing, 52(2):461 — 471.

Tejera, P., Utschick, W., Bauch, G., and Nossek, J. A. (2006). Subchannel Allocation in
Multiuser Multiple-Input Multiple-Output Systems. IEEE Transactions on Information
Theory, 52(10):4721 —4733.



