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Abstract. Network virtualization has been proposed in the last years, and it re-

ceived special attention from both networking and distributed systems commu-

nities. However, specific applications’ requirements, such as topology, security,

and resilience, pose different challenges to the network embedding problem.

Among these requirements lays the one of synchrony, that some applications de-

mand time bounds for processing and communication. In this sense, Hybrid Syn-

chrony Virtual Networks (HSVN) has been proposed to fulfill specific synchrony

requirements and better support a considerable class of distributed systems. In

our previous works, we gave attention to “space” HSVNs that was addressed

to support hybrid synchrony systems in space. In this work, analogously, we

discuss hybrid synchrony virtual networks for the “time” dimension. We regard

the time HSVNs abstractions and techniques as being a refinement of the space

HSVNs, since it further defines repeating time windows of synchrony while al-

lowing the resource to behave asynchronously for a period of time. The timely

hybrid model leads to the possibility of further sparing synchronous resources,

if compared to the space model, as will be presented in this paper.

1. Introduction

In the last three decades of research in Distributed Systems (DSs), one core aspect dis-

cussed is the one of synchrony. With an asynchronous system, we make no assumptions

about process execution speeds and/or message delivery delays; with a synchronous sys-

tem, we do make assumptions about these parameters [Schneider 1993]. In particular, in

a synchronous system, the relative speeds of processes, as well the delays associated with

communication channels are assumed to be bounded. The research on DSs has longly

touched problems that base on the synchrony property of the system environment, for ex-

ample the consensus problem [Dwork et al. 1988] where synchrony ensures progress of

several distributed algorithms; another example is failure detection [Gartner 2001]. Many

applications benefit from consensus and failure detection as building blocks in the dis-

tributed algorithms, for example Apache Cassandra [Hewitt 2011].

Synchrony in DSs impacts directly the complexity and functionality of fault-

tolerant algorithms. Although a synchronous infrastructure contributes towards the de-

velopment of simpler and reliable systems; yet such an infrastructure is too expen-

sive and sometimes even not feasible to implement. On the other hand; a fully asyn-

chronous infrastructure is more realistic, but some problems showed to be unsolvable

in such an environment, such as the impossibility result by Fischer, Lynch and Paterson

[Fischer et al. 1985]. The limitations in both fully synchronous or fully asynchronous



systems have led researchers to the development of partial synchronous distributed sys-

tems, which we call in our work, as well, by Hybrid synchronous Distributed Sys-

tems. Hybrid models assume intermediate levels of synchrony. In [Verı́ssimo 2006],

Verı́ssimo presented the wormhole model, that considers the space dimension for hy-

brid synchrony, where one part of a system would behave synchronously, while another

part would be fully asynchronous. Cristian and Fetzer proposed the timed-asynchronous

model [Cristian and Fetzer 1999], where the system alternates between synchronous and

asynchronous behavior over time. Due to the hybrid behavior, both models are stronger

than asynchronous model and weaker than synchronous one.

During our research path [Hasan et al. 2013, Hasan et al. 2014,

De Oliveira et al. 2015], we argued that Virtual Networks (VNs) and a suitable VN

embedding process offer suitable environment for running distributed applications with

partial synchrony. This has led to the abstraction of new type of virtual networks that we

name The Hybrid Synchrony Virtual Networks (HSVNs). They are virtual networks that

have subsets of nodes and links that obey time bounds for processing and communication.

Our previous contributions treated the Space HSVNs considering physical resources

hybrid in space, i.e. resources behave either synchronously or asynchronously during

all the time. The Space HSVNs are addressed to the DSs of hybrid synchrony in space,

which we call space hybrid synchronous systems.

The timed-asynchronous model assumes that the system alternate between syn-

chronous and asynchronous behavior. More specifically, according to [Dwork et al. 1988]

partially synchronous systems can alternate between synchronous and asynchronous be-

havior, being hybrid in time. For each execution, there is a time after which the upper

bound δ is respected by the system. This time is called Global Stabilization Time (GST).

Since the upper bound cannot hold forever, it is accepted that it holds just for a limited

time ∆s. In practical terms, ∆s is the time needed for consensus to make progress or to

be reached. We call these timely hybrid synchronous systems.

Actually, both models (i.e., hybrid models in space and in time) are not com-

pletely excludent. If a resource has no ability to behave synchronously, then it offers no

time guarantees at all. However if a resource is able to behave synchronously, the space

model defines that it is always synchronous while the time model defines that it behaves

eventually synchronous as described above. From the point of view of resources utiliza-

tion, we can regard the time model as being a refinement of the space model, since it

further defines repeated windows of synchrony while allowing the resources to behave

asynchronously for a period of time. It is possible to support timely hybrid synchronous

systems with Space HSVNs, adopting the assumption and embedding model proposed

in [Hasan et al. 2013, Hasan et al. 2014, De Oliveira et al. 2015], but this choice would

result in wasting synchronous resources because of reserving them for virtual demands

that would behave synchronously only eventually (i.e., only during time windows). With

the goal of sparing synchronous resources, we propose new type of HSVNs, that is the

Time HSVNs suitable for the timely hybrid synchronous nature of certain DSs.

The main contributions of this paper are: (i) define the assumptions and abstrac-

tions needed to characterize both Substrate Networks (SNs) and Virtual Networks (VNs)

suitable for Time HSVNs, (ii) and develop an embedding model for Time HSVNs that

answers the timely synchronous nature of the system and aware of sparing synchronous



resources which are relatively expensive. The rest of this paper will be organized as the

following: Section 2 summarizes the related works; Section 3 details the abstractions

and techniques we propose for the Time HSVNs together with the embedding model; in

Section 4 we evaluate the embedding model; and in Section 5 we conclude the work.

2. Related Work

The time-variant nature of networks has attracted considerable attention in the literature.

Xie et al. [Xie et al. 2012] observed that during the networking intensive phases of appli-

cations, collision and competition occurs for the network resources, resulting in making

the applications running time unpredictable. The uncertainty in execution time further

translates into unpredictable cost, as tenants need to pay for the reserved virtual machines

for the entire duration of their jobs. Xie et al. [Xie et al. 2012] propose the design of the

first network abstraction (to the authors’ best knowledge), TICV (Time Interleaved Virtual

Clusters), that captures the time-varying nature of cloud applications, and they propose a

systematic profiling-based methodology for making the abstraction practical and readily

usable in today’s data center networks. The network abstractions that [Xie et al. 2012]

consider are similar to those proposed in [Guo et al. 2010, Ballani et al. 2011], but the

last two works overlook the real time variant nature of resource requirements and simply

assume that the customer will specify them somehow.

Zhang et al. conducted a series of research that considers the bandwidth (BW)

variant nature of VNs during the process of resources provisioning, [Zhang et al. 2011,

Zhang et al. 2012, Zhang et al. 2014]. The authors modeled the time-variant nature of

the VNs demands as the combination of a basic sub-requirement, which exists all through

the VNs lifetime, and a variable sub-requirement, which exists with a probability. For

the basic sub-flows, fixed bandwidth is allocated (traditional BW sharing). But for the

variable sub-flows, the authors consider specific design of the SN; they assume that the

time is partitioned into frames of equal length, and each frame is further divided into slots

of equal length. The authors develop two first-fit algorithms that map the variable sub-

flows to the time slots on the SN. The first algorithm does not consider the inter-flows

collision per slot, whereas the second algorithm is aware of it. The inter-flows collision

per slot is calculated based on the probability of occurrence of the variable sub-flows.

In the topic of VNs mapping, we find that our work is near to the works con-

cerned with delay constraints. For example, Zhang et al. [Zhang et al. 2010] propose a

heuristic algorithm for mapping virtual multi-cast service-oriented networks subject to

delay. Another work [Infuhr and Raidl 2011] addressed the VNs mapping problem with

delay, routing and location constraints. Nevertheless, these works consider a homoge-

neous physical infrastructure and cannot be adopted for hybrid synchronous DSs that de-

mand hybrid physical infrastructure. Moreover, these works do not consider applications

with time-variant delay, both for processing speeds and messages communication.

Our work considers the synchrony time-variant nature of virtual networks, ad-

dressed for timely synchronous distributed systems. The problem raised in this paper

(i.e., time HSVNs embedding) could be solved using the models proposed in our previous

works [Hasan et al. 2013, Hasan et al. 2014, De Oliveira et al. 2015] by overlooking the

synchrony timely-variant nature of VNs, but this would result is reserving synchronous

resources permanently for demands that require synchrony only during time windows. In



this paper, we argue that, adopting suitable abstractions and techniques, together with a

suitable embedding model, increases the resources usage efficiency.

3. Time HSVNs: abstractions and techniques

Formerly in this paper, we referred to DSs that demand synchrony eventually during the

system life, in other words, they demand synchrony during periods of time to allow the

progress of these systems. We assume that this kind of systems are supported by virtual

networks that reflect the timely synchrony nature. We name this type of VNs the Time

Hybrid Synchronous Virtual Networks abbreviated to Time-HSVNs. In this section we

detail about (i) the Time-HSVNs characterization; ii) the SN suitable design to answer

the Time HSVNs demands; and (iii) the Time-HSVNs embedding over the adopted SN.

3.1. Time-HSVNs characterization

Time-HSVNs carry the common features of typical VNs [Chowdhury and Boutaba 2010],

but in addition, they need to be further characterized to allow them to reflect the timely

synchrony nature. We consider that the synchrony demands of each VN has a cyclic pat-

tern with the cycle T time units. During T , each virtual node and link demands synchrony

once, for a certain period of time. The time windows when the virtual element is provided

synchrony is named the synchronous rounds, and the time windows when it is not pro-

vided synchrony is named the asynchronous rounds. We assume that the client is able to

define the synchronous rounds he needs within T , and he is able to express it to the virtual

network provider. The client needs to be provided synchrony, eventually within T , dur-

ing the specified time duration he expresses, without caring for when it will be provided

within T . The VNs cyclic pattern makes them reflect the nature of timely synchronous

DSs, which repeatedly demand eventual synchrony during the system life.

3.2. SN design

We assume the existence of certain mechanisms that guarantee building physical network

elements (nodes and links) that behave synchronously. These mechanisms can be related

to the type of physical materials used, or to the procedures followed for configuring them,

such as admission control and Quality of Service policies. The exact mechanisms for

building synchronous resources is out of the scope of our work, but we assume their ex-

istence. In our previous works with Space HSVNs [Hasan et al. 2013, Hasan et al. 2014,

De Oliveira et al. 2015], we distinguished between two types of resources; synchronous

and asynchronous, where both types maintain their synchrony status during the sys-

tem life. In the current step of our work, Time HSVNs demand a refinement of the

Space HSVNs abstractions and techniques to suit better the new view of synchrony (i.e.,

periodic eventual synchrony).

In [Zhang et al. 2011], Zhang et al. propose a bandwidth sharing technique that

allocates bandwidth (BW) in accordance with VNs traffic fluctuation as detailed in the

related works. The authors consider specific design of the SN as the following: the time

is partitioned into frames of equal length, and each frame is further divided into slots of

equal length. The authors develop an algorithm that maps the variable sub-flows to the

time slots on the SN in a way that the sub-flows maped to the same slot do not violate the

BW capacity, neither exceed a collision threshold allowed, where the sub-flows collision



is calculated based on the probability of their occurrence. The proposed methodology

allows an opportunistic bandwidth sharing between the sub-flows.

In our work, we inspire a suitable SN design from the work of Zhang et al.

[Zhang et al. 2011] after adapting it in what matches our problem: i) in our work the

virtual flows are of fixed BW demand during time (not opportunistic demands), thus, we

disconsider collision probability; ii) the HSVNs demand synchrony once during T , see

3.1, so, we need only one time window during T that applies Zhang et al. technique. We

name this time window synchronous frame. The synchronous frame is further partitioned

into time slots of equal size, we name them synchronous slots; iii) the virtual demands

mapped to a synchronous slot should not violate the physical BW capacity to eliminate

competition and assure synchrony. The length of the synchronous frame and the number

of time slots within a frame is related to the VNs number and demands. We assume that

each virtual node and link do not demand synchrony slots that exceed the number of slots

per synchronous frame.

3.3. Time HSVNs Embedding

The virtualization architecture we adopt is the one proposed by Schaffrath et al.

[Schaffrath et al. 2009]. We assume that the virtual network provider (VNP) has com-

plete information about: i) the SN topology and its attributes (nodes Central Processing

Unit (CPU), links bandwidth (BW), and synchronous slots number and length), and ii) the

virtual networks topology and demands (nodes CPU, links BW, synchrony demands). The

VNP receives the synchrony demands in term of time period, and translates it into number

of synchronous slots of the SN slots. We deal with the case of off-line VNs embedding.

The time HSVNs will be provided synchrony during the synchronous frame. Out of the

synchronous frame, additional asynchronous demands can be mapped and competition

can occur. This does not pose any problem for demands that do not expect synchrony.

The Time HSVNs embedding problem can be stated as the following: How to

map the virtual synchronous slots to the physical synchronous slots, with the objective

of minimizing the mapping cost represented by the used BW? The approach we followed

for solving the Time HSVNs was to benefit from our previous works on Space HSVNs

[Hasan et al. 2013, Hasan et al. 2014, De Oliveira et al. 2015], by refining the proposed

model for Space HSVNs to a new version that expresses the synchronous slots. Further,

we enhanced the achieved solution to allow more VNs to be mapped on the same SN. So,

the Time HSVNs mapping would go through two phases as the following:

1. the macro mapping phase: This phase maps the virtual elements (nodes and links)

to the physical resources that can support them. This phase leads to a mapping

solution, that considers minimizing the physical bandwidth consumption. At the

end of this phase, each virtual node and link will be mapped to a physical node

and path that can support them. The macro mapping phase model is achieved by

refining the Space HSVNs mapping model to express synchronous slots.

2. the micro mapping phase: This phase increases the efficiency of the solution

achieved in the macro mapping phase, by allowing embedding possible future

VNs demands on the same given SN. this phase is performed individually for

each physical node and link used in the macro mapping phase. The micro map-

ping phase maps the virtual synchronous demands to the physical synchronous



slots. For solving the micro mapping phase, we adopted an off-the-shelf problem

from the literature due to its similarity, that is the Cutting Stock problem (CSP).

3.4. The Macro Mapping Phase

The inputs of this phase are: (i) the SN topology and attributes, and (ii) the VNs topologies

and demands. And the output of this phase will be assigning each virtual node to one

physical node and each virtual link to a physical path, where a path can be composed of

one link or more. At this phase, the problem turns to be: how to map the VNs on top of

the SN with the least physical bandwidth consumption possible. We formulate the macro

mapping problem in the shape of a Integer Linear Program (ILP).

Variables definition - The SN is represented by an undirected graph G(N,L),
composed of a set of physical nodes N and links L. Analogously, each virtual network

V Nk belonging to the set of virtual networks V N will be presented by an undirected

graph Gk(Nk, Lk). The number of synchronous slots provided by the physical node i and

physical link (i, j) are sync(i) and sync(i, j). Analogously, sync(ik) and sync(ik, jk)
are the number of synchronous slots demanded by the virtual node ik and link(ik, jk).
Besides synchrony, two other attributes are considered for the SN and VN elements: nodes

CPU , and links bandwidth (BW ). The syntax for those attributes on the SN and VN

respectively are: cpu(i), bw(i, j), cpu(ik), and bw(ik, jk). Finally, we define the model

output variables, they are: a binary function σ(ik, i) that expresses whether node i ∈ N

maps node ik ∈ Nk, and a binary function ρ(ik, jk, i, j) that expresses whether link (i, k)
is part of the physical path that maps the virtual link (ik, jk). After solving the macro

mapping model, each physical node i is mapping a set of virtual nodes Nk(i), and each

physical link (i, j) on the SN is mapping a set of virtual links Lk(i, j).

The Macro mathematical model - It is formulated in the shape of an ILP as

bellow:

Mapping objective- The Objective Function (1), we consider is inspired from

[Hasan et al. 2013], which is to minimize the total bandwidth used.

Objective: minimize

∑
∀V Nk∈V N

∑
∀(ik ,jk)∈Lk ρ(ik, jk, i, j) · sync(ik, jk) · bw(ik, jk); (1)

Mapping constraints-

- Capacity constraints:

for every (i, j) ∈ L and every (ik, jk) ∈ Lk

ρ(ik, jk, i, j) · bw(ik, jk) ≤ bw(i, j) (2)

for every i ∈ N and every ik ∈ Nk

σ(ik, i) · cpu(ik) ≤ cpu(i) (3)

- Nodes mapping constraints:

for every V Nk ∈ V N , ik ∈ Nk

∑

∀i∈N

σ(ik, i) = 1 (4)



for every V Nk ∈ V N , i ∈ N ∑

∀ik∈Nk

σ(ik, i) ≤ 1 (5)

- Links mapping constraint:

for every V Nk ∈ V N , (ik, jk) ∈ Lk, i ∈ N

∑

∀j∈N

ρ(ik, jk, i, j)−
∑

∀j∈N

ρ(ik, jk, j, i) = σ(ik, i)− σ(jk, i) (6)

- Nodes synchrony constraints:

for every i ∈ N ∑

∀V Nk∈V N

∑

∀(ik)∈Nk

σ(ik, i) · sync(ik) ≤ sync(i) (7)

- Links synchrony constraints:

for every (i, j) ∈ L

∑

∀V Nk∈V N

∑

∀(ik ,jk)∈Lk

ρ(ik, jk, i, j) · sync(ik, jk) ≤ sync(i, j) (8)

The capacity constraint (2) assures that the bandwidth of every virtual link does

not exceed the bandwidth of the physical link mapping it. Similarly, constraint (3) is

regarding nodes CPU . The node mapping constraint (4) assures that each virtual node is

mapped once on a physical node. Constraint (5) assures that virtual nodes belonging to

the same V N are not mapped on the same physical node. This is to achieve load balancing

besides improving the reliability. This procedure minimizes the number of virtual nodes

prone to failure by a physical node failure. For any virtual link (a, b), the links mapping

constraint (6), adopted from [Zhang et al. 2010], assures the creation of a valid physical

path. When mapping a set of virtual nodes Nk(i) on one physical node i; the nodes

synchrony constraint (7) assures that the number of virtual slots mapped on i do not

exceed the number of synchrony slots provided by i. This constraint considers the worst

case, when each virtual slot requires a complete synchrony slot alone without sharing.

Similarly, constraint (8) represents the equivalent restriction regarding links synchrony.

3.5. The Micro mapping phase

This phase increases the efficiency of the solution achieved in the macro phase, by al-

lowing embedding possible future VNs demands on the same SN. This is achieved by

scheduling the synchronous demands efficiently within the synchronous frame. By view-

ing the problem at this stage as an optimization problem, the problem turns to be: how to

schedule the virtual demands within a synchronous frame minimizing the number of syn-

chronous slots used. Revising the literature, we found a very similar problem that is the

Cutting Stock Problem (CSP) [Haessler and Sweeney 1991], which is one of the NP-hard

problems cited by KARP [Karp 1972], and from the cutting stock problem we inspired

the solution of the timely HSVNs micro mapping problem.

In operations research, the cutting-stock problem is the problem of cutting

standard-sized pieces of stock material (e.g., paper rolls or sheet metal) into pieces of



specified sizes while minimizing material wasted. Translating the CSP elements into the

micro mapping problem: the specified sized pieces are the synchronous slots demanded

by the VNs; the standard-sized pieces of stock material is the synchronous frame on SN;

a pattern is the set of demands accepted within a stock in the CSP, and it will be the set

of virtual slots accepted within the physical slot in the micro mapping problem; and the

objective of the CSP in to minimizing the stock waste and in our problem it would be to

minimize the number of synchronous slots used within the synchronous frame.

The Micro mathematical model - We express it bellow for links but it goes sim-

ilarly for nodes. Consider one physical link (i, j) with a synchronous frame of sync(i, j)
slots, that maps a set of virtual links Lk(i, j), where every virtual link has two attributes:

the number of synchronous slots demanded sync(ik, jk) and the capacity of BW de-

manded bw(ik, jk). Within each physical slot, the virtual synchronous slots that can be

mapped to it form a pattern Xj [Haessler and Sweeney 1991]. The patterns are formed

based on the BW of the virtual demands compared with the physical link BW. These pat-

terns are the input to the micro model. The micro model aims at minimizing the number

of synchronous slots used within the synchronous frame which is achieved by minimizing

the total number of patterns (Equation (9)). Assuming aij is the number of times order i

appears in pattern j [Haessler and Sweeney 1991]; constraint (10) assures providing every

virtual link with a number of synchronous slots that is at minimum equal to the number of

synchronous slots demanded sync(ik, jk). The output of the micro mapping model will

be telling which are the used patterns, and how many of each pattern is needed.

Objective: minimize

∑
∀j∈PATTERNS(Xj) (9)

Cutting constraint

for every i ∈ Lk(i, j)

∑

∀j∈PATTERNS

(aij ·Xj) ≥ sync(ik, jk) (10)

After performing the micro mapping phase, the SN is updated (used BW and

CPU is substracted from the SN nodes and links capacity), and the macro mapping phase

can run again, allowing more VNs to be mapped on the same SN. The combination on

the macro phase, the micro phase, and the SN updating we name an optimization cycle

(Opt cyc). Figure 1 illustrates two optimization cycles for mapping groups of virtual links

on one physical link. The physical link updating happens either by reducing its capacity,

or reducing the number of synchronous slots it supports. Either way, there will be a

waste in the physical bandwidth, we refer to the bandwidth waste resulted by reducing the

physical capacity Wh, and by reducing the synchronous slots Wv. The updating approach

chosen is the one with the least waste (the smaller value between Wh and Wv is marked

with a star * in the figure). This updating methodology we follow is because the macro

mapping phase (at the beginning of each optimization cycle) considers physical slots of

equal capacity and fully empty.



Figure 1. An illustrative scheme for the HSVNs optimization cycles

4. Performance Evaluation

The Time HSVNs abstractions we considered together with the Time HSVNs embedding

model are supposed to lead to further sparing of synchronous resources, if compared to the

space model. We run preliminary experiments that allow investigating the performance of

the proposed embedding approach of Time HSVNs. The aspects considered during the

analysis of our model are: (i) the embedding cost; (ii) the physical resources load; (iii)

the optimization time; (iv) the topology of the physical subnetwork composed of the used

resources; and (v) the micro mapping phase efficiency.

Experiments were designed as a full factorial [Jain 1991], exploring all possible

combinations between the networks parameters. Such choice of experiments was done by

other works like [Bays et al. 2012]. Similar to [Yu et al. 2008, Bays et al. 2012], physical

and virtual networks were randomly generated. For this we used BRITE tool (Boston uni-

versity Representative Internet Topology gEnerator) [Medina et al. ] with Waxman model

[Waxman 1988]. We implemented the mathematical model with ZIMPL language (Zuse

Institute Mathematical Programming Language) [Koch 2004], both for the macro and

micro mapping phases, and we used CPLEX [IBM ] to solve the Integer Program (IP),

running on a computer Intel HM75, Core i3-3217U 1.80 GHz (Giga Hertz), cash 3 MB

(Mega Byte), Random Access Memory (RAM) of 2 GB (Giga Byte), DDR3 and operating

system Xubuntu 14.04.

In all the following experiments, the substrate network size was fixed to 15 nodes.

Initially all CPUs (Central Processing Unit) of SN nodes are free, and links Band Width

(BW) is uniformly distributed between 1-3 Gbps (Giga bit per second). We ran twelve

experiments divided into three groups, A, B and C, with VNs total size of 10, 20, and 30

nodes in each group respectively. The VNs were generated with 3, 4, or 5 nodes each,

and CPU demands 10%, 15%, or 25% of the SN nodes CPU capacity, and BW demands

uniformly distributed between 100 Mbps (Mega bit per second) and 1 Gbps. VN nodes

demand one synchronous slot per T . In scenarios 1, 2, 3 and 4 of each group, the virtual

links synchronous slots demanded varies between 1, 2 , 3 , and 4 slots. The SN provides

periodically, each T = 20 seconds, a synchronous frame of 4 seconds length, divided into

four equal time slots. Table 1 details the experiments parameters.

The first parameter evaluated is the mapping cost represented by the used BW,



Table 1. Experiments parameters

Expe. A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4
VN size 10 nodes 20 nodes 30 nodes

Virtual links sync. slots 1 2 3 4 1 2 3 4 1 2 3 4
Virtual nodes sync. 1 slot per T

each VN size 3,4,5 nodes
VNs BW uniformly distributed: 100Mbps-1Gbps
VNs CPU 10,15,25 % of SN nodes CPU

SN size 15 nodes
SN BW uniformly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

which is the model objective function. We evaluate our results by comparing them with

the BW used in case the experiments in Table 1 were mapped using the space model and

the SN previously addressed in [Hasan et al. 2013], see Figure 2. With the time model,

the used BW indicated is the one consumed within the synchrony frame. To allow just

comparison, we calculate the BW used in the space model during time window equal to

the frame length. We note down the following main observations:(i) within one experi-

ments group, the used BW is proportional to the number of synchronous slots demanded

by the VNs. For example, in scenario A2 the BW used is 13.624 Mbps/frame, and it is

20.436 in scenario A3, the proportion between the two figures is the proportion of the

number of synchronous slots demanded in each scenario 2/3. (ii) by comparing the coun-

terparts experiments of the three groups (e.g., A2, B2, and C2) we notice that the BW

used increases. This is due to the VNs size increment, which tends naturally to reserve

more resources. (iii) within each experiment’s group, the BW used with the space model

is equal to the maximum BW used within the group (i.e., experiment 4 of each group).

(iv) the time model is more efficient as it spares more resources. For example, mapping

the VNs in scenario B3 with the time model spares 33,33% of the resources needed when

mapping the same set of VNs with the space model. And the spared ratio increases when

the synchronous demands within T decreases, e.g. in B2, the time model spares 100% of

the resources, and in B1 spares 300%.

Figure 2. Used bandwidth

The second parameter evaluated is the physical resources load. This study is useful

when done on a scenario that can possibly load the SN. We chose scenario C2 (VNs of big

size). Figure 3 depicts the Cumulative Distributed Function (CDF) for physical nodes and

links in experiment C2. We note that 80% of the SN nodes had a load that varies between

10% and 60%, only 13.33% had a load between 60% and 80%, and no nodes were highly

loaded more than 80%. And regarding the physical links, we note that, 41.37% of the SN



links had a load that ranges between 10% and 60%, and only 14% of the physical links

had a load that exceeded 60%, and no links were fully loaded. So, the SN resources seem

to have load distribution which is good, since concentrating the load in certain elements

will result in congestion, leading to block mapping certain VNs in the future. This is

achieved because, the proposed model does not push the mapping process to exhaust the

used physical resources before allocating new ones, rather, all resources are given the

same chance to be chosen, as long as they allow mapping on the shortest path.

Figure 3. CDF for resource usage in experiment C2

The third parameter evaluated is the mapping time. The optimization process

reached its end with scenarios A and B. Whereas in scenarios C, the optimization was ter-

minated with optimization gap less than 2%. We took this decision when the optimization

progressed slowly without much gain. For example, in scenario C3, it took 30 minutes

to reach a solution with 4.46% gap, then another 33 minutes to reach another solution

with 1.86% gap. In realistic scenarios, the client might prefer a semi-optimal solution

in a short computational time, than an optimal solution after long time. From Table 2,

we notice that, (i) most of the scenarios demanded optimization time that is less than 20

minutes, which is an acceptable computational time; (ii) we notice that the time model

demands more time than the space model. And we notice that the difference between

both increases with the increment of the problem size (i.e., VNs size and synchronous

slots demanded) which increases the number of variables that need to be solved by the

optimization process.

Table 2. Embedding time (in minutes)

Group. space exp.1 exp.2 exp.3 exp. 4
A 0.13 0.07 0.08 0.09 0.19
B 0.75 1.46 1.16 5.31 18.13
C 8 15.09 46.55 65.95 38.89

The fourth parameter studied is the topology of the physical subnetwork composed

of the physical used elements (i.e., nodes and links). Figure 4 illustrates this topology for

scenarios A1, A2, and A3. The topologies under study are the ones in red. We notice that,

even though all these scenarios with the same VNs size (10 nodes), yet the model tends

towards reserving more physical elements with the increment of the synchronous slots

demanded by the VNs. For example, in scenario A1 the physical subnetwork under study

is composed of 6 nodes, whereas in scenario A3 it is composed of 10 nodes. Previously,

we noted down that the model tends towards distributing the BW load on the physical



resources, Figure 3. Now we add that the model tends also towards distributing the syn-

chrony load as well. So, when the VNs increase their synchrony demands (i.e., number of

synchrony slots), the model tends towards reserving new elements. This behavior avoids

congesting the synchronous frames of the used elements, allowing mapping new arriving

VNs. Because the time HSVNs will be blocked or by exhausting the SN CPU and BW,

or by exhausting the SN synchronous slots.

(a) scenario A1 (b) scenario A2 (c) scenario A3

Figure 4. Topology divergence of used physical resources

The fifth parameter studied is the micro mapping model efficiency represented by

the number of VNs accepted. We run this study on the case of one physical link and

an endless queue of virtual links attended in order. We consider five experiment groups

with different load range, Table 3. We run three experiments per group, with different

synchrony demands. In each experiment several opt cyc are performed till the physical

link is exhausted and no demands are accepted. Our main observations: i) the efficiency

decreases when the virtual links load increases. For example, the efficiency in group K

was 9, 13, and 16 whereas in group L it was 6, 8, and 12. ii) the efficiency increases when

the maximum number of synchronous slots demanded decreases. For example, in group

K, when the maximum number of synchronous slots demanded decreased from 3 to 1,

the model efficiency increased from 9 to 16; iii) the micro model efficiency is the same in

group N and O, the reason is that, both groups are with high virtual links load, this does

not allow slots sharing between virtual demands, and the mapping solution achieved in

the macro mapping phase cannot be optimized further with the micro mapping phase.

Table 3. Number of mapped virtual links with different load and synchrony de-
mands
Scenario VNs load/SN capacity sync(ik, jk)=1,2,3 slots sync(ik, jk)=1,2 slots sync(ik, jk)=1 slot

K (0-20] % 9 13 16
L (20-40] % 6 8 12
M (40-60] % 5 6 8
N (60-80] % 1 2 4
O (80-100] % 1 2 4

5. Conclusion

In our previous works, we gave attention to space HSVNs that was addressed to support

hybrid synchrony systems in space. In this work, analogously, we discuss hybrid syn-

chrony virtual networks for the time dimension. The main contributions of this paper are:

i) characterize the time HSVNs to reflect the synchrony time-variant nature; ii) adopt a

suitable design for the SN to support the demands; and iii) propose a resources alloca-

tion model. Simulation results show that the proposed embedding framework answers the

synchrony time-variant demands efficiently (spares synchronous resources), distributes



the load over the physical resources (nodes and links), and has an acceptable computation

time for reaching the embedding solution. In addition, topological study of the subnet-

works composed of the used resources on the SN showed that, the embedding model is

aware of the synchronous demands variation, and the resulting subnetwork scatters more

on top of the SN when the synchronous demands increase. Further study of the micro-

mapping phase showed that its efficiency is a function of the VNs load and synchrony.

At this phase of our work, we consider that the synchrony pattern of each virtual

node and link is independent of each other, in future works, we intend to consider cases

when VNs elements synchrony is mutually dependent, to reflect better the nature of the

time hybrid synchronous DSs.
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