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Abstract. Wireless Sensor Networks (WSNs) have remarkable application po-
tentials: smart homes, environment monitoring, health care, and a myriad of
other commercial areas. In general, WSNs operate under severe energy con-
straints: a typical sensor’s battery is irreplaceable and its lifetime is limited.
Moreover, those tiny sensor nodes usually have extremely limited physical ca-
pabilities as well. Consequently, sensor deployments with reasonable densities
are fundamental in order to prolong the lifetime of the networks. Distributing
sensors randomly can lead to a redundancy on some areas and this is desirable
to overcome the failures of some sensors. In this work, we propose a distributed
algorithm to schedule active sensors to both reduce the redundancy of data ob-
tained by the network and prolong its lifetime. Experimental evaluation shows
that our approach guarantees a coverage rate around 99.9%.

1. Introduction

Advances in electronic devices with the introduction of new miniaturization techniques,
lower power consumption and increasing processing power, is making the widespread
use of devices featuring appealing power and wireless communication capabilities feasi-
ble. Wireless Sensor Networks make extensive use of this kind of devices for a variety
of applications, such as environmental monitoring, agriculture, health monitoring, educa-
tion, climate monitoring, and military uses, among others. In addition to its traditional
applications, the so-called Internet of Things (IoT) poses a significant demand to WSN,
since there is a set of technologies that provide connectivity at any moment and in all
locations for IoT components [Atzori et al. 2010].

Every year, electronic devices gains more processor power. The computational
capacity of a huge computer in the 60’s can now be easily exceeded by a simple small
calculator. Despite this evolution in the computational power, battery capacity did not
evolve as quickly. Innovation in energy storage area has not kept pace with the growing
demand of electronic devices, making it even more important to use the available com-
puting resources efficiently. Moreover, even with the increase of available processing at
an increasingly lower cost, it is still necessary to use cheaper devices with higher energy
constraints, e.g., sensors to be embedded in the walls of a building to prevent its collapse
or to assist in the search for survivors of disasters.



One of the most used techniques for prolonging network lifetime is coverage man-
agement, wherein coverage can be defined in terms of a percentage of the monitored space
that is covered by the available sensors. This technique allows the turn off of the devices
that are in the same sensor area, thereby reducing redundancy and, consequently, increas-
ing the network’s lifetime.

WSN usually assumes that the cost of sensors is low, such that a large amount
of sensors can be used to monitor an area, specially when the sensors are randomly dis-
posed to avoid black holes, i.e., no coverage areas. Therefore, coverage management
turns sensors on and off in order to save resources, reducing redundancy in the gathered
data. Solutions developed in this area must consider high level objectives like robustness,
scalability and simplicity [Wang and Xiao 2006].

There are a lot of approaches in energy-efficient scheduling mechanisms, each of
those considering different design assumptions, such as detection model, sensing area,
transmission range, and different target applications [Wang and Xiao 2006]. This work
focuses on a simple and elegant solution that can be used in virtually any WSN sce-
nario that allows scheduling. We employed the Scheduling by Edge Reversal (SER)
[Barbosa and Gafni 1989] to handle the active nodes in a WSN. The use of this algo-
rithm, originally developed to distributed systems to enter critical region, gives rise to
challenges that are unveiled and covered later in this paper. The main design goals of this
work is to conceive a simple, scalable and robust solution.

The remainder of this article is organized as follows. Section 2 presents the state-
of-the-art on WSN coverage. Scheduling by edge reversal is introduced in section 3.
Our approach is detailed in section 4. Section 5 is devoted to present the simulations we
designed for experimental evaluation and we analyze the results obtained. Finally, the
conclusions of this work and further research perspectives are shown in section 6.

2. Coverage in Wireless Sensor Networks

The coverage in a WSN indicate how a target area is covered by the deployed sensors.
There are some coverage models in the literature [Wang 2011]. Most of them use geo-
metric relations to check whether a point is covered by a specific sensor. Boolean models
have just one possible result for a given point and a target area: covered (TRUE) or not
covered (FALSE). Such models are classified as boolean sector coverage models, that
consider a circular sector, i.e., a boolean disk coverage model. In this case, each sensor
has a radius and all points inside that circle are covered by that sensor.

There are other network coverage models that consider other factors. The Attenu-
ated Disk Model considers that coverage quality may decrease depending on the distance
between the target point and the closest sensor. Therefore, this model defines an atten-
uation function that models such behavior. The Truncated Disk Model is similar to the
Attenuated Disk Model, but imposes a limit to the distance from a sensor to a target.
Hence, this model can be understood as a mix of Boolean Disk Coverage Model and
Attenuated Disk Model. Moreover, there are also stochastic coverage models built on
probabilistic frameworks.

According to [Wang 2011], the main design issues for coverage problems are:
coverage type, deployment method, coverage degree, coverage ratio, activity scheduling
and network connectivity. Briefly speaking, each one of these are:



e Coverage Type refers to what kind of target will be covered: Point Coverage
considers the targets as discrete points inside a monitored area, hence the main
goal is to cover all points; Area Coverage treats all points inside the monitored
area equally, whereas the main objective is to cover the entire area; and Barrier
Coverage, where the objective is to create a barrier and find a penetration path
inside this barrier to the covered targets.

e Deployment method refers to how the sensors will be deployed in the target area.
Sensors can be placed deterministically in specific points, or can be randomly
placed, such as being dropped from an air-plane.

e Coverage Degree refers to how a point is covered by WSN. This characteristic
shows how many sensors are covering a specific point, when a points is k-covered,
there are k sensors covering that point.

e Coverage Rate is a value that indicates how much of target area is monitored (or
how many points).

e Node Scheduling changes the states of the sensors to active or inactive. If a point
is covered by more than one sensor, the scheduling method decides which sensors
can be active and for which period time. This is the main area of this work.

e Network Connectivity guarantees that all pairs of nodes in the network can be
reached, i.e., there is always a path between any pair of nodes.

2.1. Routing in WSN

The routing of collected information in a WSN poses a major challenge in this field. A
typical WSN has hundreds or thousands of nodes such that it is not possible to keep a
global addressing system, an agent responsible for routing or an address table mainte-
nance. Sensors must act together, in a distributed way, in order to assure that sensed data
will be within the reach of the base station.

There are several routing protocols for WSN in the literature, which can be divided
according to their network structure in three types: plain routing, hierarchical routing and
location based routing [Al-Karaki and Kamal 2004]. In plain routing, all sensors have the
same rules and functions, these may belong to a particular routing path. In hierarchical
routing, sensors are grouped into clusters and have different roles on the network, each
cluster has a member exercising the role of a cluster head, a central node that receives all
information from its components and sends to the base station. In location-based routing
sensors, positions are available (the nodes are placed in a deterministic way or have some
positioning system, like GPS) and this information is used for routing decisions.

3. Scheduling by Edge Reversal

Consider a neighborhood-constrained system composed of a set of processing elements
(PEs) and a set of atomic shared resources represented by a connected directed graph
G = (V,E), where V is the set of PEs and F is the set of its directed edges (or arcs),
stating the access topology (directed edges are henceforth referred to as arcs). The latter
is defined in the following way: an arc exists between any two nodes if and only if the
two corresponding PEs share at least one atomic resource. Scheduling by Edge Reversal
(SER) works as follows: starting from any acyclic orientation w on G, there is at least one
sink node, i.e., a node such that all its arcs are directed to itself; all sink nodes are allowed
to operate while other nodes remain idle.
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Figure 1. SER dynamics for the Dining Philosophers under heavy load

This obviously ensures mutual exclusion at any access made to shared resources
by sink nodes. After operation, a sink node will reverse the orientation of its arcs, becom-
ing a source and thus releasing the access to resources to its neighbors. A new acyclic
orientation is defined and the whole process is then repeated for the new set of sinks. Let
@ = g(w) denote this greedy operation. SER can be regarded as the endless repetition of
the application of g(w) upon G.

Assuming that G is finite, it is easy to see that eventually a set of acyclic orienta-
tions will be repeated defining a period of length P. This simple dynamics ensures that
no deadlocks or starvation will ever occur since in every acyclic orientation there exists
at least one sink, i.e., one node allowed to operate. In addition, it can be proved that
in any period, every node operates exactly the same constant number of times (denoted
M) [Barbosa and Gafni 1989].

SER is a fully distributed graph dynamics in which the sense of time is defined
by its own operation, i.e., the synchronous behavior is equivalent to the case where every
node in G takes an identical amount of time to operate and also an identical amount of
time to reverse arcs. Another interesting observation to be made here is that any topology
G will have its own set of possible SER dynamics [Barbosa and Gafni 1989].

As an example of SER’s applicability, consider Dijkstra’s paradigmatic Dining
Philosophers problem under heavy load, i.e., in the case philosophers are either “hungry”
or “eating” (no “thinking” state). Such system can be represented by a set { P, ..., Py}
of N PEs, in which each PE shares a resource both with its previous PE and its subsequent
PE. Thus, taking the original configuration where N = 5 and setting an acyclic orientation
over the 5 nodes ring, the resulting SER dynamics where P = 5 and M = 2 is illustrated
in Fig. 1.

4. Distributed Scheduling Proposal

The motivation for this work came across the evidence of the possibility of using the
scheduling algorithm by reversal edges (SER) to scale the radio nodes in a wireless sensor
network and model this solution to solve active nodes scheduling in a coverage manage-



ment problem. The Scheduling by Edge Reversal (SER) algorithm was the chosen one
and this solution was used to schedule radios in WSN in order to maintain the coverage
of the sensed area and reduce energy consumption. It is worth mentioning that the radio
of a sensor can consume more energy receiving messages than transmitting, as we can
observe in a data-sheet of Texas Instruments CC2420 radio [Texas 2013]. This algorithm
made use of message exchange for coordinate active sensor scheduling, and turning off
the radio is by itself a big challenge, because messages cannot be be received when the
radio has been turned off.

4.1. Initializing

The first pass was mapping the SER algorithm to schedule radio sensors in a WSN. Our
neighborhood-constrained system is the WSN itself. The processing elements are the
sensors nodes in WSN. In a general way, this can be done as follows: if two sensors in a
WSN are close enough, we can consider it redundant, so one of them can be turned off (so
this is the clause to consider that the two PE’s have an atomic shared resource in SER).
Then, if two sensors are redundant, there will be an edge between them. After mapping
redundant sensors and creating edges between them, the SER algorithm can be applied. In
order to maintain the SER correctness, we assume that the nodes have a unique identifier
and that the edges are initially set in direction to higher id sensors, as this is a requirement
for avoid deadlocks in the use of the SER algorithm.

The first pass of our proposal is to identify all neighbors of a sensor. For this, all
nodes send an initial hello message and wait for messages from its neighbors. With these
incoming messages, the nodes can make an estimation of distances, based on the radio
transmission. As this is not the focus of this work and we do not want to use euclidean
distances (considering that all sensor knows its position), we used RSSI to estimate
these distances. RSSI is not reliable to calculate distances [Heurtefeux and Valois 2012]
[Benkic et al. 2008], as it can vary too much in greater distances. Here we just create an
edge if nodes are close enough to have considerable redundancy in the sensed area, so the
precision in this small distance is sufficient for this work.

In our algorithm we consider only the messages exchanged between sensors close
enough, for this we use a reduced power to save energy in message exchange.

4.2. The Lonely Sensor Case

As SER was not originally intented to solve schedule in WSN, we identified a situation
that can generate black holes in coverage, specially in network borders. We call these
situations lonely sensors case. This particular case occurs when a node has only one
neighbor and this neighbor, in turn, has more than a neighbor. Figure 2 shows an example.
In (a), node 7 has all its edges directed for itself, becoming active. In (b) node 7 reverses
its edges, making nodes 1 and 3 active. In (c) nodes 1 and 3 reverse their edges, enabling
node 2, at this point node 1 could still remain active, because there are no neighbors active
- node 7 will only become active when receiving the edge of 2 next round. This may cause
a hole in the monitored area since nodes 1 and 7 will not be active.

In this case, the node that has only one neighbor could continue active after fin-
ishing its active time, once its neighbor gets the edge, but still have the edges of other
neighbors, ie, the node being off will cause the appearance of a hole in the network that
could be avoided if the application needs the largest possible coverage.



(a) (b) (c)

Figure 2. In the original SER when a node has only one neighbor, it may occur
that both this node and its neighbor are disabled at the same time, which is not a
problem in distributed systems, but could cause a hole in the coverage on WSN

To prevent this situation from occurring, when all sensors identified their neigh-
bors, they broadcast their neighbor list. In this way, all nodes know their neighbors and all
neighbors of each one, making possible to identify when a node is in alone sensor case.
When this happens, a sensor in lonely sensor case will not reverse this edge after the end
of the round, and it will remain active until one of its neighbors reverts the mentioned
edge. When a node is in this condition, it has all edges directed to itself, except the one
of the lonely sensor, and it will take this one, finally scheduling that node to sleep.

The first difference in SER usage is in identifying lonely sensors, the inserted
amendment aimed to maintain the node active up until its neighbor get its adjacent edges,
which maintains the underlying acyclic graph (avoiding “deadlocks™) and the alternation
between nodes accessing their shared resources remains guaranteed (avoiding “starva-
tion”). The last point is the analysis of the residual energy of the sensors, which may be
a delay in one or more cycles in the reversal of the edges and this can result in unequal
access to shared resources but the correctness of the new algorithm remains.

(d)t=2r (e) t=2r+i (f) t = 3r+i

Figure 3. When there is a delay, as in (c) where the node 5 reversed its edge with
delay i. In some rounds, the nodes would be again synchronized, because this
time will be propagated to the rest of the network.

4.3. Synchronization

If a sensor tries to send a message to a neighbor that has a radio turned off, the message
will get lost. In order to avoid that, one solution is the use of synchronized time in all
nodes, which it is not always possible. We employ a scheme with the use of timers,
counting round times. It works as follows: when a sensor inverts his edges, before putting



itself in a sleep state, a timer is started with a value of a round. When this timer expires, the
sensor turns on its radio allowing it to receive messages from its neighbors again. After
all incoming messages in that round have been received, it starts a new timer, but now the
value of this timer is the duration of that round plus the elapsed time until the receiving
of the last message from this round. In this way, we can guarantee that the sensor will be
awake at the same moment of the first node, which ended the previous round, avoiding the
loss of incoming messages from sensors using distinct timers. With this solution, a delay
in a node clock would not be a problem, except for the waste of energy, provided that the
delay is not in the order of magnitude of the time of a round, which could cause that the
delayed node was considered dead. In some rounds the delay would be propagated to all
nodes, as shown in Figure 3 which illustrates the synchronization scheme employed.

4.4. Energy Level and Edge Reversal

Another change in the original SER algorithm consists in the use of current energy level
of a sensor to decide if it will or not invert its edges in current round. This strategy
will balance the energy levels, allowing an energy consumption in a more elaborate way.
Using this strategy creates a problem because of the expectation that the algorithm will
reverse all edges in each round, and a sensor cannot be in an active state for an entire
round waiting a message that will not come. In order to avoid this, when a round ends, an
active sensor checks if this remaining energy is bigger than their neighbors energy level,
if so, it will remain active for one more round. We added a field in all communications
messages containing actual energy level of the sensors. When an active sensor checks its
energy comparing with its neighbors, it will be checking the energy of the last round, but
all neighbors remain in sleep state in this round, so not much energy change is expected.
When a sensor decides not to invert, it needs to send a message announcing that it will not
proceed to invert its edges in this round, so its neighbors can sleep for one more round.

When a sensor receives a message of this kind (not invert), it will check if there
are still other edges to receive in this round, if not, it can go to sleep state and notify this
to its neighbors. Using energy level to decide edge reversal can impact coverage causing
black holes, because a sensor will break the edge reversal cycle. To solve this problem,
when a sensor realizes that all its neighbors will be in a sleep state, it changes to an active
state, avoiding the black hole creation. This is why a node needs to send a message when
it is going to a sleep state, when the expected is to be in an active state.

Using the energy level as a decision before the reversal strategy of edges can affect
the network coverage. We have in the left side of Figure 4 the inversion of edges without
taking into account the energy level, at each iteration, the active nodes reverse its edges
(simple use of scheduling by edge reversal). Note that in 1 - (d) is a repetition of the cycle
which continues to occur continuously every three iterations. In 2 we have the inversion
edge taking into account that we can not reverse its edges due to comparing the energy
level with neighbors. 2 - (c) node 3 decided not reverse its edge by having more energy
than neighbors. So during that round he was the one node to stay active. Coverage during
the iteration 2 - (¢) is reduced due to the reversal cycle break.
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Figure 4. Inversion edges without taking into account the amount of energy (1)
Inversion edges taking into account the amount of energy (2)

4.5. A Distributed Coverage Node Scheduling Algorithm for Dense Wireless Sensor
Networks

The proposed solution is showed right below in high level pseudo code. Some details,
related to the startup of the solution which includes the use of a probabilistic algorithm
for the exchange of identities between neighboring nodes, have been omitted but they are
detailed in [Paillard et al. 2004].

Find neighborhood
Ajust Edges ; Orient edges to higher ID nodes
Verify Edges ; Check if all edges point to itself

if ActiveState then
| StartTimer(EndRound : RoundTime);

else
Goto Sleep

StartTimer(EndRound : RoundTime); section 4.3
end
Algorithm 1: Distributed Duty Sheculing

Algorithm 1, which is the main algorithm of the solution, starts by sending ini-
tial messages and waiting messages from its neighborhood. Shortly thereafter, another
message send the neighborhood list, as stated in section 4.2. From there it checks if it
has all the edges, getting active to the end of the round, or whether it should go to the
inactive state, if it doesn’t have all the edges. Fig 5 shows a diagram state for a better
understanding of our entire approach.

Algorithm 2 is executed when one of the timers expires. At the end of a round, the
node checks the level of energy in relation to its neighbors, reverses the edges and turns
to an inactive state, or send a message annoucing that it will continue in the active state.
When a node finishes a round in which it was in an inactive state, it turns on the radio and
waits for messages from neighbors also starting the timer that will expire only if there are
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Figure 5. State Diagram

missing messages from any node at the end of the round - this will cause the removal of
this node, considering him dead.

Apart from these we have two algorithms that operate when a node receives a
message, verifying and executing the steps taken when receiving each type of message,
such as whether the node will remain active or not [Matos 2013].

5. Results and analysis

Below are presented the obtained results by simulating the work proposed here and a
discussion of results.

5.1. Simulator and parameters

The simulations were performed on the Castalia Simulator [Castalia 2013], version 3.2.
The choice of the simulator was based mainly on the following facts: Castalia is WSN
specific, open source and is widely utilized [Pediaditakis et al. 2010]. Castalia was devel-
oped on Omnet++ framework [Varga 2001, Varga and Hornig 2008].

We employed an hierarchical architecture where cluster heads were arranged
in a grid, for a total of 16 nodes arranged in 4 x 4 grid equally distributed inside a
100m x 100m simulation area. The routing to the nodes was defined statically following
the shortest path to the sink (located at center). As routing is not our focus, we used this
schema because of its ease to implement. Cluster Heads send one message when the sim-
ulation starts and each sensor associates a cluster head with more powerful signal. The
application layer used just generates one package per second in each sensor, simulating
sensor readings. The MAC utilized was TunnableMAC (a CSMA/CA implementation
available in simulator).

Boolean disk model was used to calculate coverage rate in each round of the sim-
ulation (as a percent of total area), since Castalia does not provide a direct output of
coverage and boolean disk is a model widely used in the literature.

We considered that an edge will exist between two sensors if the distance mea-
sured between them has a maximum of 6 meters. Measures on simulator with RSSI



begin

switch ExpiredTimer do

case EndRound

if I don't have more energy than my neighbors then

SendM sgReverseEdges() ; Edge Reversal
Turn of f the radio;
TimerStart(EndldleTime : (RoundTime));
else
sends message that will not reverse
SendM sgN ot Reverse();
TimerStart(EndRoundWithTime : (RoundT'ime));
end
end
case EndldleTime
Activates the radio again and waits for new
messages

Turn on the Radio;
Activate neighbors check timer

TimerStart CheckNodes with time : RoundTime;
end

case CheckNodes
A neighbor doesn’t send messages during a
round find which one and remove

LookneighborO f f
end

endsw
end

Algorithm 2: Expired Timer

started showing inconsistency for distances higher than 8 meters, so, up to this distance,
there are no problems in measurement estimation method utilized. We simulated a com-
munication with -3dbm signal and obtained 24.84 meters of medium range (repeated 30
times). With this value we considered a sensing range of 12 meters (about half of com-
munication range, as no measurement was less than 24 meters), what give about 62% of
common area.

Sensors were randomly deployed and simulations were executed with the num-
ber of sensor ranging from 100 to 250 (we did not consider Cluster Heads), each being
repeated 30 times. The total time of simulation was 500 seconds.

We executed three different configurations, as follows:

1. ECNS: Energy-Efficient and Coverage-specific Node Scheduling for Wireless
Sensor Networks [Meng et al. 2010]. This solution was chosen because of its
similarities in being a fully distributed, location aware and simple solution;

2. Hierarchical: No active sensor scheduling, all nodes send their data to Cluster
Heads all time;

3. Our Proposal: Distributed Duty Scheduling Algorithm for Large Scale WSN’s.



The solution proposed on this work, using adapted version of SER applied to
WSN’s.

5.2. Round time

To set how long will take a round, we made simulations starting from 5s to 75s, corre-
sponding to 1% to 15%, respectively, of the total amount of time execution, allowing at
least six rounds to execute. We observed that with larger round times, more energy will
be left at the end, but this is because some nodes have not yet been scheduled, so as 5s
was the round time that resulted in a more balanced energy distribution between nodes,
we chose this time to run the remaining simulations.

5.3. Coverage Rate Results

As the algorithm will schedule sensors, coverage rate is an important measure to verify
the viability of our solution. Calculate the area covered by sensors in a WSN is not an
easy job[Aziz et al. 2009, Huang and Tseng 2003] and Castalia simulator does not this
output available, so we need to create an output in each round and calculate overlapping
areas using boolean sensor model. As expected, with more dense networks, less impact
on coverage rate will occur. Table 1 shows the results.

Table 1. Coverage Rate

Number of Sensors | Coverage obtainned
100 90%

150 98%

200 99.75%

250 99.9%

As ECNS requires coverage rate as input, it was not directly compared here. We
used the coverage rate computed by our algorithm as input for the ECNS to calculate
energy levels.

5.4. Energy Consumption

Initial energy in each node was set to 90 Joules (about 1% of capacity of an AA battery).
This value was chosen to reduce simulation time necessary until the first sensor dies. The
energy results showed that our solution can save energy, every in low density simulations,
but with lost of coverage, as seen in later section (90% coverage with 100 nodes). Fig 6
show results for 100 and 250 sensors respectively. ECNS starts saving energy with 250
nodes, but our proposal saved 20% more energy than ECNS and 35% compared to do not
schedule sensors in this situation.

5.5. Energy Distribution

To verify as was the energy balance of our solution, we show the results of the spatial
distribution of the energy level at the end of a simulation as we can observe in Fig 7. The
hierarchical graph is virtually a flat, since all nodes were active all the time. On ECNs,
as few of us have been disabled, there is also little energy gap, so we chose to override
the results in the same image. More above you can see that there is a variation in energy
distribution, since some nodes performed more rounds than others, but the depressions
and ridges are small, showing a good balance in consumption between the nodes.
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5.6. Network Lifetime

Network lifetime is the time an important feature in a WSN, since one of the main ob-
jectives is to extend the network lifetime as much as possible. The definition of Network
lifetime may vary depending on the application since there are applications that work cor-
rectly only if they have data of all network sensors, can work with already other data from
at least a proportion of functioning sensors. Network lifetime was defined here as the
time until death of the first sensor (the battery of sensor was completely drained). Fig 8
shows the results in minutes (remembering that the amount of initial energy of the nodes
is greatly reduced in our simulations, so the results in minutes).

6. Conclusions

As shown by the results, our solution provides good energy saving with low impact on
coverage in dense networks and enhances network lifetime. If coverage required is not so
high, the solution can be even used in low density networks. The ECNS is simple, based
on message exchanges between neighbors during execution rounds, similar to the solution
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Figure 8. Medium time until first sensor die (in minutes).

proposed here. We have not found other specific solutions based on these same principles.
ECNS was compared to two other solutions: LDAS and NRS regarding QoC. Our analysis
focuses on energy conservation and the results matched the coverage obtained with the
ECNS with much less active nodes.

ECNS starts showing good results only on high dense network, what is expected
since it puts a node in inactive state if it has a high number of neighbors in order to
guarantee coverage (the exact number depends on coverage rate required). We did not
test with higher densities because we obtained 99.9% of coverage rate using 250 sensors.

This work can be easily adapted to heterogeneous networks (with different sensing
radio) changing the calculation of distances, taking into account different radio.

The distance between sensors to enable an edge can have an important influence
on results of solution. Considering higher distances will lead to more energy saving, but
it will decrease coverage rate. Thus, this is application dependant.

As a future work, we could have an integrated solution with routing that can lead
to more energy saving. Another future work will be to improve the algorithm to calculate
the distances between nodes, as RSSI is not suitable in real world applications. It is
possible to develop dynamic intervals between edge reversal, with higher or lower times,
depending on network state.
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