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Abstract. Wireless sensors networks are distributed system composed of
battery-powered nodes with low computational resources. Like in many dis-
tributed systems, some applications of WSN require time synchronization among
their nodes. In the particular case of WSN, synchronization algorithms must re-
spect the nodes computational constraints. The well known FTSP protocol is
famous for achieving nanosecond precision with low overhead. However, it re-
lies on MAC timestamp, a feature not available in all hardware. In this work,
we propose MAC timestamp independent version in order to extend and adapt
FTSP to work on hardware that do not have MAC timestamp while keeping the
low overhead and high synchronization precision. Our results we estimate an
average synchronization error of 1.508µs per hop, while adding a corretion
message.

1. Introduction

Wireless Sensor Networks (WSNs) are composed of small computational devices
equipped with an antenna for wireless communication, one or more kind of sensors, and
a small CPU for simple data processing [Baronti et al. 2007]. These devices are usually
called motes. Due to the limited radio signal range and energetic constraint, WSNs have
restrictions and unique characteristics that differ from traditional networks and distributed
systems [Arampatzis et al. 2005].

WSNs have several applications in many diverse fields. Sensors deployment in
military applications have always been widespread, so the introduction of motes was
a natural incorporation to the advancement of systems already used. Applications en-
hanced with WSN include tracking enemy and targets [Yang and Sikdar 2003], moni-
toring of vehicles [Sinopoli et al. 2003], countersniper system [Simon et al. 2004], and
surveillance systems [Gui and Mohapatra 2004]. Environmental monitoring also provide
opportunities to apply WSN. Our environment has a lot of information that play an im-
portant role in our quality of life, such as quality of air, water, sound and solar radia-
tion to which we are exposed directly and affect our health [Oliveira and Rodrigues 2011,
Cardell-Oliver et al. 2004]. Increasing interest in green computing has led to concerns
with energy consumption of IT facilities [Chong et al. 2014], and WSNs play a strategic
role in monitoring and controlling these environments [Zanatta et al. ].

Some of those applications require time synchronization mechanisms with good
accuracy and scalability, all this complying with their low computational resources and



energy availability [Zanatta et al. , Simon et al. 2004, Yang and Sikdar 2003]. Flooding
Time Synchronization Protocol (FTSP) is the most popular time synchronization algo-
rithm for WSN [Maróti et al. 2004]. It is fault-tolerant, achieves high accuracy (∼ 1, 5µs
per hop) utilizing timestamps in low layers of the radio stack, and saves energy using
a linear regression technique to compensate clock skews with few exchanges of syn-
chronization messages. However, MAC layer timestamping is not a standardized fea-
ture, and hence, not interoperable among different hardware and physical layer proto-
cols. There is an effort from Google to standardize MAC layer timestamping in WSN
[Wang and Ahn 2009], but so far there is not much compliance.

Many synchronization protocols use MAC timestamp: some have less ac-
curacy than FTSP, focus at other problems and make more restrictive assump-
tions [Ganeriwal et al. 2003, van Greunen and Rabaey 2003]; others can achieve bet-
ter accuracy between distant nodes [Nazemi Gelyan et al. 2007, Lenzen et al. 2009,
Sommer and Wattenhofer 2009]. Elson et al. proposed the Reference Broadcast Syn-
chronization [Elson et al. 2002] (RBS) to eliminate uncertainty of the sender without
MAC timestamp by removing the sender from the critical path. The idea is that a third
party will broadcast a beacon to all receivers. The beacon does not contain any tim-
ing information; instead the receivers will compare their clocks to one another to cal-
culate their relative phase offsets. It has ∼ 30µs error per hop and is independent of
MAC timestamp. Ranganathan and Nygard offer a good overview of these protocols
[Ranganathan and Nygard 2010].

In this paper, we propose a modified version of FTSP, called FTSP+, in order to
work without MAC timestamp. For that, we use application level time-stamping on syn-
chronization messages, which leads to a well-known problem: the time elapsed between
time-stamping the packet and gaining the wireless medium reduces synchronization accu-
racy. We circumvent this problem using medium access interrupt handlers on the sender
to measure the time needed to gain the medium, and correction messages to reduce sender
side time uncertainty.

Our experimental results show that we only double FTPS synchronization inaccu-
racy, a great result compared to RBS which is 10 times worse. We also present a quanti-
tative evaluation of medium access and processing delays on TinyOS, an evaluation that
we have not found in related work.

There rest of this paper is organized as follows. Section 2 briefly recalls FTSP
as needed for this work. Section 3 describes FTSP+. Section 4 brings our experiment
results, and finally, Section 5 brings the concluding remarks.

2. Flooding Time Synchronization Protocol
This section briefly describes the Flooding Time Synchronization Protocol (FTSP). For
more detailed information, refer to [Maróti et al. 2004].

FTSP is a synchronization protocol for WSN that provides high accuracy, con-
sumes few resources, uses little bandwidth and is fault-tolerant. It elects a node as root
to provide the time reference for synchronization; if root failure is detected (using time-
outs), another root is elected. Root and synchronized nodes send synchronization mes-
sages periodically, and receiving nodes use these messages to synchronize. Therefore,
FTSP supports multi-hop networks.



Synchronization messages comprise a sender timestamp which is the estimated
global time and rootID which is the network identifier of the root (where the node with
the lowest ID is the chosen root). seqNum is a sequence counter that is incremented
each synchronization round; this field is used to verify the redundancy of messages
[Maróti et al. 2004].

All nodes think they are root when the network starts, so they broadcast synchro-
nization messages to the network. When they receive a synchronization message, they
check who has the lowest ID: if the local ID is higher, this node gives up on being root
and starts synchronizing. Another important check is the seqNum. If it is greater than the
local value highestSeqNum, it means that this is a new synchronization message and starts
the synchronization procedure.

The synchronization procedure consists of computing a linear regression
[Elson and Estrin 2003] that will provide the clock skew (used to estimate the global time)
in relation to the reference node. The last step is to forward its local (synchronized) time
to other nodes.

1 event Radio.receive(TimeSyncMsg *msg){
2 if( msg->rootID < myRootID )
3 myRootID = msg->rootID;
4 else if( msg->rootID > myRootID
5 || msg->seqNum <= highestSeqNum )
6 return;
7 highestSeqNum = msg->seqNum;
8 if( myRootID < myID )
9 heartBeats = 0;

10 if( numEntries >= NUMENTRIES_LIMIT
11 && getError(msg) > TIME_ERROR_LIMIT )
12 clearRegressionTable();
13 else
14 addEntryAndEstimateDrift(msg);
15 }

Figure 1. FTSP Receive Routine [Maróti et al. 2004]

Figure 1 shows the routine of receiving synchronization messages. Lines 2 and 3
compare the rootID of the synchronization message with the local rootID. If the message
has a lower rootID, the node assumes this rootID as root. Lines 4 to 7 ignore messages
with higher rootID and lower seqNum. If seqNum is higher, local highestSeqNum is up-
dated. Lines 8 and 9 makes a root node give up on being root when it has a rootID lower
than its own ID. In case the rootID is larger it is checked whether the seqNum is greater or
equal to the value of highestSeqNum, this check prevents information redundancy because
the message will only be used when the rootID is less than or equal to myRootID and the
number greater than the value of highestSeqNum. Lines 10 to 15 verify if the time of a
message is in disagreement with the earlier estimates of global time, if applicable clear
the regression table, if not, accumulate synchronization messages to calculate the linear
regression and synchronize.



1 event Timer.fired() {
2 ++heartBeats;
3 if( myRootID != myID
4 && heartBeats >= ROOT_TIMEOUT )
5 myRootID = myID;
6 if( numEntries >= NUMENTRIES_LIMIT
7 || myRootID == myID ){
8 msg.rootID = myRootID;
9 msg.seqNum = highestSeqNum;

10 Radio.send(msg);
11 if( myRootID == myID )
12 ++highestSeqNum;
13 }
14 }

Figure 2. FTSP Send Routine [Maróti et al. 2004]

Figure 2 shows the sending routine. A node decides to be root because has not
received a synchronization message for ROOT TIMEOUT (lines 3 to 5). A node sends
synchronization messages if it is root or has synchronized (lines 6 to 10). If a node is root,
it also has to increment its highestSeqNum.

3. FTSP+
In any distributed time synchronization technique, nodes have to tell each other their
local time. Figure 3 depicts this scenario. The sending node stores its local time t1′ in the
synchronization message at time t1 and orders the message to be sent. Due to medium
random access uncertainties, the sending node only gets access to the medium at time
t2 and starts sending me message. t2 − t1 is called medium access time. The message
propagates over the medium for an interval of time tp until it reaches the receiver radio at
time t3. tp is the propagation time. Due to interrupt handling policies and packet header
processing, the receiver node timestamps the message receipt at time t4 with its local time
t4′′. t4− t3 is the processing time.

Synchronization inaccuracy happens because the receiving node thinks that at time
t4 the sender has time t1′ and the receiver has time t4′′. We can see in Figure 3 that this
is not true. At time t4, the sending node has time t4′ = t1′ + medium access time +
propagation time + processing time. MAC layer time-stamping makes medium access
time and processing time equal zero. Since propagation time is negligible (∼ 1µs)
[Maróti et al. 2004], some synchronization policies — including FTSP — can achieve
very good accuracy. However, without MAC layer time-stamping, these times are non-
negligible and have to be calculated.

FTSP+ calculates medium access time using an interrupt handler to time stamp the
moment that the node gets medium access to send the synchronization message. Although
medium access is granted at time t2′, medium access timestamp equals t2′ + δ, where δ is
the overhead to process the interrupt handler.

The sender sends a correction message with content t2′ + δ − t1′ so the receiver



Figure 3. Syncronization steps.

can estimate t4′. Let us call this estimation t̄4′. The receiver calculates t̄4′ as in Equation
(1).

t̄4′ = t1′ − (t2′ + δ − t1′)

t̄4′ = t1′ + medium access time + δ (1)

The difference between t4′ and t̄4′, which is the estimation error, is:

t4′ − t̄4′ = propagation time + processing time− δ (2)

Since processing time and δ are interrupt handler processing latencies, they tend
to cancel out each other. We investigate their values in our experiments in Section 4.
Remember that propagation time is negligible.

As can be seen in Figure 4, an FTSP+ receiver has
routines to handle two different types of income messages:
Radio.receiveSyncMsg(SyncMsg *msg) handles synchronization mes-
sages and Radio.receiveCorrectionMsg(CorrectionMsg *msg) handles
correction messages. The correction time, expressed in Equation (3), is the information
that is transmitted to the receiver to apply the correction to previous messages.

correction time = t2′ − t1′ + δ (3)

The Radio.receiveSyncMsg(SyncMsg *msg) differs from FTSP re-
ceive only for lines 13 and 14. These lines store synchronization messages in a list to
wait for the correction messages if MAC layer time-stamping is not available.



1 event Radio.receiveSyncMsg(SyncMsg *msg){
2 if( msg->rootID < myRootID )
3 myRootID = msg->rootID;
4 else if( msg->rootID > myRootID
5 || msg->seqNum <= highestSeqNum )
6 return;
7 highestSeqNum = msg->seqNum;
8 if( myRootID < myID )
9 heartBeats = 0;

10 if( numEntries >= NUMENTRIES_LIMIT
11 && getError(msg) > TIME_ERROR_LIMIT )
12 clearRegressionTable();
13 else if (MAC_Time==false){
14 addToWaitCorrectionMsgList(msg);
15 }else{
16 addEntryAndEstimateDrift(msg);
17 }
18 }
19

20 event Radio.receiveCorrectionMsg(CorrectionMsg *msg){
21 applyCorrection(msg);
22 addEntryAndEstimateDrift(msg);
23 }

Figure 4. Receiver algorithm



The event Radio.receiveCorrectionMsg(CorrectionMsg

*msg) receives the message with the correction value, use the function
applyCorrection(msg) that applies the correction and removes from the
wait list the synchronization message that matches the incoming correction message,
corrects the timestamp and calls function addEntryAndEstimateDrift(msg).

1 event Timer.fired() {
2 ++heartBeats;
3 if( myRootID != myID
4 && heartBeats >= ROOT_TIMEOUT )
5 myRootID = myID;
6 if( numEntries >= NUMENTRIES_LIMIT
7 || myRootID == myID ){
8 msg.rootID = myRootID;
9 msg.seqNum = highestSeqNum;

10 initialTime = call getLocalTime();
11 msg.timestamp = initialTime;
12 Radio.send(msg);
13 if( myRootID == myID )
14 ++highestSeqNum;
15 }
16 }
17

18 event sendDone(SyncMsg *msg, error_t error){
19 finalTime = call getLocalTime();
20 correctionMsg.correction = finalTime-initialTime;
21 correctionMsg.seqNum = msg.seqNum;
22 Radio.send(correctionMsg);
23 }

Figure 5. Sender algorithm

As can be seen in Figure 5, an FTSP+ sender has two routines:
Timer.fired() periodically sends synchronization messages (like in FTSP) and
sendDone(message t *msg, error t error) sends the correction message.

The function Timer.fired() differs from FTSP only for lines 10 and 11,
which collects the timestamp at application level. sendDone(message t *msg,
error t error) handles the interrupt when wireless medium access is granted to
collect the medium access timestamp by compute the time that has passed between
send/sendDone and send out the correction message, this technique is previously
discussed by [Sousa et al. 2014] that is a simple technique for local delay estimation in
WSN.

Lines 20-21 show how the correction time is computed. seqNum is used to iden-
tify which message is being adjusted, finalTime and initialTime refers to times
t2 and t1 in Equation (3).



4. Evaluation
In this section, we describe our experiments to assess FTSP+’s accuracy. We have im-
plemented FTSP+ on TinyOS 2.1.2 [Levis et al. 2005] and ran our tests on Micaz motes
[MEMSIC 2015]. Micaz motes do support MAC layer timestamping, but we need this
information to measure our correction accuracy. For synchronization, we overwrite MAC
timestamp with our application layer timestamp.

We use jiffys as time unit because this is the time basis of TinyOS and repre-
sents the time between 2 clock ticks. Our experiments results correspond to 10 minutes
experiments with synchronization messages being sent every 3 seconds, with 2 nodes
communicating and a base station connected to an computer via serial port for record the
messages.
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Figure 6. Histogram and P.D.F. of correction times.

Our first experiment measures the probability distribution of correction times (re-
call from Section 3 that it is t2 − t1 + δ). As can be seen in Figure 6, correction time
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Figure 7. C.D.F. of correction times.

mean (µs) std. deviation

processing time 0.87± 0.0095 0.33
δ 0.88± 0.0093 0.33

correction time 9.01± 0.093 3.32
medium access 8.13± 0.093 3.31

t4′ − t̄4′ −0.0047± 0.013 0.47

Table 1. Mean and standard deviation

varies mostly from 5 to 13 jiffys with an uniform distribution. We can see in Figure 7,
which plots the cumulative density function of the correction times, that in about 80% of
cases correction time is above 5 jiffys. This is a significant overhead and source of inac-
curacy that FTSP+ is able to measure and compensate for. For our scenario the average



correction time delay is 9.011 jiffys as we can see in Table 1 where we have the mean with
confidence interval of 95% and the standard deviation.

Delay in jiffys 0 1 2 3 4 5
Frequency 606 4271 0 1 1 1

Table 2. Delay frequency of receiver processing time.

Delay in jiffys 0 1 2 3 4 5
Frequency 581 4297 0 0 1 1

Table 3. Delay frequency for δ.

Our second experiment measures the probability distribution of δ and processing
time. Recall from Section 3 that they are the radio interrupt processing time in the sender
and the receiver, respectively. We can see in Table 2 and 3 that their values mostly range
between 0 and 1 jiffy, with extremely rare cases that do not go beyond 5 jiffys in our
experiments. Their averages are 0.87 and 0.88 jiffys, which can be considered equal.
Therefore, those delays, that FSTP+ is not able to calculate and compensate for, are very
small and do not compromise synchronization accuracy significantly.

We calculate an estimation of the error and compare our results with other pro-
tocols (some use MAC timestamp, some do not) and summarize the results in Table 4.
Knowing MAC timestamping has an inherent 1 jiffy variation in accuracy and that FTSP
has 1.5µs error per hop, we use a simple rule of three to estimate FTSP+ synchroniza-
tion error per hop. FTSP and FSTP+ differ only for their timestamping technique, and as
can be seen in Table 1 FTSP+ timestamping is on average 0.0047 jiffy higher than MAC
timestamping (t4′ − t̄4′). Therefore, our rule of three is given in Equation 4.

1.5µs

FTSP+ sync error
=

1jiffys
(0.0047 + 1)jiffys

(4)

We also estimate what would be the error of FTSP without MAC timestamping
(we call it mFTSP in the table), in which case timestamping is on average 9 jiffys higher
than MAC timestamping (medium access delay + processing delay = 8.13 + 0, 87 =
9). Equation 5 shows the rule of three for this estimation. As can be seen, RBS has a
synchronization error about 10 times bigger than FTSP+.

1.5µs

mFTSP+ sync error
=

1jiffys
(9 + 1)jiffys

(5)

In TinyOS 1.x, where FTSP was first implemented and tested [Maróti et al. 2004],
jiffys are in microsecond resolution by default. A jiffy in TinyOS 2.1.2 is approximately
1ms, but there are compiler TMilli options to allow microsecond resolution. In future

1This value is scenario-dependent while it depends upon the scenario contention level.
1This value is scenario-dependent while it depends upon the scenario contention level.
2Values estimated based on average error in jiffys.
3Based in [Ranganathan and Nygard 2010].



MAC Timestamping App Timestamping

FTSP PulseSync FTSP+ mFTSP RBS
1.5µs 3 1.5µs 3 1.508µs 2 15µs 1 2 29µs 3

Table 4. Average synchronization error per hop.

work, we want to use jiffys with microsecond resolution and measure the synchronization
error per hop using a setup with GPIO pins for tracking events in an external and stable
accuracy clock that record every exchanged messages.

4.1. Energy Consumption

The energy consumption was analyzed in experiments using the resources available on
the Testbed [Lim et al. 2015]. Running the previous experiments we find the following
result listed in Table 5.

FTSP 99.04 mJ
FTSP+ 99.80 mJ

Table 5. Mean of consumption

The values represent the power consumption of CPU and radio communication
of network (include the root and client node). We find close values in the tests, they are
also related to synchronization frequency used on the network, for each synchronization
message of FTSP the FTSP+ send another for correction, causing an extra consumption.

5. Conclusion
In this work, we presented a modified version of Flooding Time Synchronization Proto-
col to work without MAC layer timestamping. To keep accuracy as high as possible, we
use radio interrupts to measure the instant nodes get medium access. Senders use cor-
rection messages in addition to synchronization messages in order to compensate their
synchronization timestamps with medium access delay.

In our experiments, we ran tests on Micaz motes running TinyOS 2.1.2 to measure
correction times, processing times and medium access time. We showed that medium
access time is the main source of synchronization error and quantified it in a real testbed.
We also showed that processing times are very small, on average 0.87 jiffys.

In future work, we want to precisely measure the synchronization error using a
high accuracy external clock to measure timing error between synchronization events
among the network motes. We also intend to consolidate the power consumption tests for
different scenarios and see how much the variation in synchronization parameters affect
in energy expenditure of WSN.
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