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Abstract. The design and development of adaptive systems brings new 

challenges since the dynamism of such systems is a multifaceted concern that 

ranges from mechanisms to enable the adaptation on the software level to the 

(self-) management of the entire system using adaptation policies or system 

administrators, for instance. Data stream processing is one example of system 

that requires dynamic reconfiguration. While dynamic reconfiguration is a 

desirable feature, stream systems may suffer with the disruption and overhead 

caused by the reconfiguration. In this paper, we propose and validate a non-

disruptive reconfiguration approach for distributed data stream systems that 

support stateful components and intermittent connections. We present 

experimental evidence that our mechanism supports safe distributed 

reconfiguration and has negligible impact on availability and performance. 

1. Introduction 

An adaptive system must be able to cope with changes in its execution environment and 

in the requirements that it must comply with [Ma et al. 2011]. The authors [Ma et al. 

2011] further emphasize that changes are hard to predict at design time. On the other 

hand, many distributed systems have to provide services for 24x7, with no downtime 

allowed [Giuffrida et al. 2014]. This continuous execution makes it difficult to fix bugs 

and add new required functionality on-the-fly as this requires non-disruptive 

replacement of parts of a software version by a new ones [Ertel and Felber 2014]. The 

authors in [Ertel and Felber 2014] further explain that prior approaches to dynamic 

reconfiguration (a.k.a. dynamic adaptation, live update or dynamic evolution) require 

the starting of a new process and the transfer of states. However, [Hayden et al. 2012] 

argue that the cost of redundant hardware, and the overhead to transfer and synchronize 

the system’s state may be considerable high. 

 Despite extensive research in compositional dynamic software adaptation 

[Vasconcelos et al. 2014] [Kakousis et al. 2010] (i.e., the sort of reconfiguration 

addressed by our work), safe reconfiguration is still an open problem [Giuffrida et al. 

2014]. A common approach is to put the component that has to be updated into a safe 

state, such as the quiescent state [Kramer and Magee 1990], before reconfiguring the 

system [Ghafari et al. 2012]. Thus, a safe reconfiguration must drive the system to a 

consistent state and preserve the correct completion of on-going activities [Ma et al. 



  

2011]. At the same time, dynamic reconfiguration should also minimize the interruption 

of system’s service (i.e. disruption) and the delay with which the system is updated (its 

timeliness). In [Ertel and Felber 2014], the authors also explain that orchestrating the 

restart of all the components is very challenging if the system’s service must not be 

interrupted. 

 Aligned with the aforementioned requirements, applications in the field of data 

stream processing require continuous and timely processing of high-volume of data, 

originated from a myriad of distributed (and possibly mobile) sources, to obtain online 

notifications from complex queries over the steady flow of data items [Stonebraker et al. 

2005] [Cugola and Margara 2012]. Thus, while dynamic reconfiguration is a desirable 

feature, stream systems may suffer with the disruption and overhead caused by the 

reconfiguration. Furthermore, at the same time, it is not feasible to block (or await a 

quiescent state) some of the involved components. 

 In order to address the aforementioned issues, we propose and validate a non-

disruptive approach for dynamic reconfiguration that preserves global system 

consistency in distributed data stream systems. Such approach should (i) handle nodes 

that may appear and disappear at any time, (ii) ensure that all data items (of the data 

stream) are processed exactly once, and (iii) do not disrupt the system to perform a 

reconfiguration. More specifically, the main contributions of this work include a 

mechanism to enable safe reconfiguration of distributed data stream systems, a 

prototype middleware that implements the mechanism, and experiments that validate 

and demonstrate the safety of the proposed solution. 

 The remainder of the paper is organized as follows. Section 2 presents an 

overview of the key concepts and system model used throughout this work, as well as 

introduces a motivating scenario. Section 3 delves into details the proposed approach to 

dynamic reconfiguration in multiple distributed instances. Section 4 summarizes the 

main results of the assessment conducted. Finally, Section 5 reviews and discusses the 

central ideas presented in this paper, and proposes lines of future work on the subject. 

2. Fundamentals 

This section presents our system model and related works, as well as a motivating 

scenario and the main concepts about data stream processing. 

2.1. Related Work 

A common problem in the field of software reconfiguration at runtime is the 

identification of states in which the system is stable and ready to evolve [Ma et al. 

2011]. The authors [Ertel and Felber 2014] propose a framework for systems that are 

modeled using (data)flow-based programming (FBP) [Morrison 2010]. The idea behind 

FBP is to model the system as a directed acyclic dataflow graph where the operators 

(vertices) are functions that process the data flow and the edges define de input and 

output ports of each operator. Since the messages are delivered in order, this proposal 

forwards special messages informing when a component (a.k.a. operator) is safe to be 

reconfigured. When a component receives such message, it is substituted by the new 

version. Despite the advantages of such proposal, it neither handles nodes that may 

appear or disappear any time nor assumes that source components (i.e., components that 



  

generate data) may have different versions. Therefore, the problem with the work [Ertel 

and Felber 2014] is that either all components will perform the reconfiguration or none 

of them can proceed with the reconfiguration, similar to a transaction. As demonstrated 

by [Nouali-Taboudjemat et al. 2010], such approach does not have a good convergence 

rate for systems that deal with mobile devices. Finally, while a component is updated to 

its new version, it is unable to process the data flow, thereby causing a system disruption 

(or, at least, a temporary contention). 

 In the subject of dynamically reconfigurable stream processing systems, the 

work [Schweppe et al. 2010] proposes a method for flexible on-board processing of 

sensor data of vehicles that is modeled as a data stream processing system. In regards to 

dynamic reconfiguration issues, this approach is able to change component’s 

parameters, system’s topology (i.e., the graph structure), or how the component stores 

its data. However, the work does not deal with consistency for topology changes. 

Furthermore, the proposal does not allow the modification of a component by its new 

version (i.e., it does not permit compositional adaptation). Finally, the system targeted 

by the authors is deployed on a single node (i.e., a car), conversely from ours that is 

distributed and has multiple instances of a component type. 

 While some works [Vandewoude et al. 2007] block the system to enable its 

evolution, others [Ma et al. 2011] [Ghafari et al. 2012] [Chen et al. 2011] are capable of 

executing the old and new versions concurrently. The proposals in [Ma et al. 2011] 

[Ghafari et al. 2012] ensure that, while a reconfiguration is performed, any extant 

transaction with all its sub-transactions is entirely executed in the old or in the new 

system’s configuration (i.e. old or new versions) [Ma et al. 2011]. The major drawback 

is the overhead required to maintain the graph representing the system’s configuration 

[Ghafari et al. 2012]. With the aim of solving the latter drawback, the authors in 

[Ghafari et al. 2012] chose to use evolution time (i.e., the timestamp in which a 

reconfiguration is performed) as a mechanism to decide if a transaction should be served 

by the old or new version. Thus, a transaction initiated before the evolution time is 

served by the old version, otherwise it is served by the new version. Although the 

evolution time causes minor impact in the system’s performance, time synchronization 

in distributed systems is a well-known problem for such systems. 

 To the best of our knowledge, no other research work copes with the problem of 

adapting at run-time a component type that has multiple distributed instances spread 

over the distributed data stream processing system while guaranteeing the system 

consistency. That is, each component type may be deployed over many distributed (and 

possibly mobile) nodes rather than on a single node. Thus, the modification to a new 

version of one component type requires the coordinated modification of many 

component instances deployed over numerous (mobile) nodes. 

2.2. Motivating Scenario 

Consider a data streaming application that collects some sensor data from a smartphone, 

for instance, and sends it to a distributed node (e.g., cloud) in order to process the data 

(Figure 1). In typical stream applications in the field of mobile social applications [Ganti 

et al. 2011], people share sensor information about their daily physical exercise among 

friends and acquaintances. As an example, BikeNet [Eisenman et al. 2007] probes 



  

location and bike route quality data, such as CO2 level and bumpiness of the road during 

the ride, in order to share information about the most suitable routes [Ganti et al. 2011]. 

We may decompose such applications using the components shown in Figure 1. 

As the system may have an arbitrary number of mobile nodes and processing hosts or 

servers (in the cloud), each component in Figure 1 will typically have many instances 

that are deployed at different nodes. As illustrated in Figure 1, the components Data 

Gathering and Pre-Processing run on the mobile nodes (e.g., smartphones), the 

Processing and Post-Processing components run in the servers of a cloud, while the 

components Sender and Receiver run on both mobile nodes and servers. Therefore, in 

order to replace a component, the reconfiguration platform has to guarantee distributed 

consistency. Figure 1 illustrates the component types deployed on each node and that 

each component type has several distributed instances spread in the distributed system. 

We consider that each step in the processing flow has an arbitrary number of servers that 

share their workload and that data sent by a client can be forwarded to any server at step 

A, for load balancing purposes. 

 

Figure 1. Deployed components and the system data flow 

2.3. Data Stream Processing 

Data stream processing is a computational paradigm [Schweppe et al. 2010] that is 

focused at sustained and timely analysis, aggregation and transformation of large 

volumes of data streams that are continuously updated [Cugola and Margara 2012]. A 

data stream is a continuous and online sequence of unbounded items where it is not 

possible to control the order of the data produced and processed [Babcock et al. 2002]. 

Thus, the data is processed on the fly as it travels from its source node downstream to 

the consumer nodes, passing through several distributed processing nodes [Cherniack et 

al. 2003], that select, classify or manipulate the data. This model is typically represented 

by a graph where vertices are source nodes that produce data, operators that implement 

algorithms for data stream analysis, or sink nodes that consume the processed data 

stream, and where edges define the data paths among the nodes (i.e., stream channels). 



  

Therefore, many stream processing systems are inherently distributed and may consist of 

dozens to hundreds of operators distributed over a large number of processing nodes 

[Cherniack et al. 2003], where each processing node executes one or several operators. 

Furthermore, such systems have an execution dependency among component types and 

each component type may have multiple instances. The execution dependency differs 

from deployment dependency in that it considers the runtime data and control flows, 

instead of the static dependencies [Ma et al. 2011] among software modules. 

 The work [Stonebraker et al. 2005] proposes eight general rules that hold for 

data stream processing; but the most important rules related to our work are: “keeping 

the data moving”, “generating predictable outcomes”, “guarantying data safety and 

availability”, and “processing and respond instantaneously”. In order to satisfy these 

rules, a system reconfiguration must be reliable (i.e., it does not produce erroneous 

outcomes and affect the system’s availability), and not disrupt or block the stream. In 

spite of the recognized importance of dynamic reconfiguration for such systems 

[Babcock et al. 2002], researchers [Schweppe et al. 2010] confirm that most data stream 

processing middleware have no compositional adaptation mechanisms. 

2.4. System Model 

Our notion of a stream processing system, inspired by [Schweppe et al. 2010], is a 

directed acyclic graph that consists of multiple operators (i.e., components) deployed at 

distributed device nodes. More formally, the graph G = (V, E) consists of vertices and 

edges. A vertex represents an operator and an edge represents a stream channel. An edge 

e = (v1, v2) interconnects the output of vertex v1 with the input of vertex v2. Vertices 

without input ports (i.e., without incoming edges) are referred as source vertices. 

Correspondingly, vertices without output ports are called sink vertices. Finally, vertices 

with both input and output ports are called inner vertices. A tuple t = (val, path*) 

consists of a value (val) and an execution path (path*) that holds the operators, and their 

versions, that a tuple t traveled through G. For instance, a tuple t that traveled from 

source vertex SO1 to sink vertex SI1 via operators O1 and O2 holds path = {SO1, O1, 

O2}. A stream s = (t*) between v1 and v2 consists of an ordered sequence of tuples t* 

where t1 < t2 represents that t1 was sent before t2 by a node n1. A vertex is composed 

of fselect, foutput and fupdate functions. When a vertex v1 generates a tuple (i.e., sends it via 

the output port), its succeeding vertices (i.e, the vertex that receive the stream from v1) 

receives such tuple via the function fselect, which is in charge to select, or not, this tuple 

to be processed by the function fupdate. 

 In order to standardize the terms and notations used throughout this work, an 

operator (a.k.a. graph vertex) will be generically referred to as a component. A node is 

any physical device node (e.g., desktop and smartphone) that executes a component. A 

Processing node (PN), in turn, is a node that holds at least one inner operator (i.e., an 

operator with input and output ports). Furthermore, as data stream systems must be 

elastic to adapt to variations in the volume of the data streams [Vasconcelos et al. 2013], 

we consider that some processing nodes (PNs) share their workload, as shown in Figure 

1 where data originated by a client may be delivered to any server at step A. 

 As the main assumptions about the system and network, we assume that any 

node is able to enter or leave the system anytime, messages are reliably delivered in 



  

FIFO (First In, First Out) order between two nodes. We also assume that nodes are able 

of correctly executing their components, and that components per se do not introduce 

any flaws that may lead the system to an inconsistent state. We consider that there are no 

Byzantine failures and if any node fails (fail-stop), the system is able to timely detect the 

node’s failure. 

3. Distributed Dynamic Reconfiguration 

This section presents our approach to enable dynamic reconfiguration in distributed 

stream processing systems. The proposed approach is based on the idea that a data 

produced by a Client Node (CN) has to be entirely processed by a specific version of 

each component. However, there is no problem in updating a component C while a tuple 

T traverses the system as long as C is multi versioned (i.e., C has a version C1 that 

represents the old version and C2 that represents the new version) and T is exclusively 

processed by C1 or C2. Differently from other works, our proposal does not need to wait 

for the system to reach a quiescent state (or safe state) to reconfigure a fupdate function. In 

the scenario shown in Figure 1, there is a dependency between the Sender and Receiver 

components since they have to use a compatible algorithm in order to exchange 

messages (a.k.a. tuples) through the network. In this way, if the reconfiguration of the 

Receiver happens before any client sends a message, all messages are processed by the 

new version of the Receiver component since the clients use the new version of the 

Sender component. However, if the reconfiguration happens while the clients send 

messages (i.e., the data stream has a continuous flow), some messages must be 

processed by the new version (if and only if – iff – the message was sent by the new 

version of the Sender) whereas others have to be processed by the old version. At this 

time in which there are some clients with the old version and others with the new one, 

the servers must have deployed both versions of the component to be able to receive 

correctly the messages from any client. Therefore, both versions of the Receiver 

component must coexist at the servers while the system is being reconfigured. 

 Each component has one or more fselect, fupdate and foutput functions and 

components have interdependencies. The advantage of enabling a component to have 

more than one fupdate function executing concurrently is that, in face of a reconfiguration, 

the new function is able to process part of the data stream while the old one is still in use 

and thus cannot be deactivated. Accordingly, when a tuple T is received by an fselect 

function, it has to choose the correctly fupdate to process T. To do so, the fselect function 

verifies the path of T. The fselect and foutput represent the input and output ports, 

respectively, of a component, whereas the fupdate is the algorithm in charge of processing 

the transformation on the incoming data stream. Thus, we are able to reconfigure the 

algorithms that process the data streams (i.e. fupdate functions) and the system’s topology 

by means of reconfiguring the fselect and foutput functions. 

In many systems, such as data stream processing ones, the components have indirect 

dependencies. An indirect dependency is a mutual dependency [Ertel and Felber 2014] 

between components X and Z in which they are not directed interconnected to each other 

(i.e., there is no edge interconnecting them). In other words, they are not directly 

interconnected. Thus, there is at least one inner component Y to enable a tuple from X 

arrives at Z. In our example (Figure 1 and Figure 2), the Processing component depends 

on Pre-Processing component; however, there are two components between them. Due 



  

to the possibility of multi versioned components and indirect dependencies, each tuple 

holds the execution path to enable our proposal to maintain the system consistency. Yet, 

Receiver depends on Sender and Post-Processing depends on Processing. 

3.1. Dependency Management 

In our example of the data stream system, the Processing’s fselect function has to know 

the version of the Pre-Processing’s fupdate applied to pre-process a tuple T to avoid 

inconsistency. Figure 2 shows the partial data flow of a tuple T when the system has the 

fupdate functions A1, D1 and E1 of Pre-Processing, Processing and Post-Processing 

components, respectively. Figure 3 shows that the versions A2, D2 and E2 were added 

to the system and that Processing D1 (i.e., the Processing’s fupdate function D1) and Post-

Processing E1 processed the tuple T in order to maintain the system consistency. Thus, 

when T arrives at the Processing’s fselect function (Figure 3), it verifies that T comes from 

Pre-Processing A1 and then uses the Processing D1 to process T. The same happens at 

Post-Processing. Thus, every component has to be aware of its dependency to be able to 

choose the right fupdate function. 

 

Figure 2. Partial data flow of the motivating scenario where data is to be 

received by Receiver C1 

 

Figure 3. Tags of the data in a partial reconfigured system 

 The dependencies can be managed using two approaches, static or dynamic 

dependency management. The former, which is the simplest one, does not take into 

account the “downstream” dependent components to generate the execution path of a 

tuple. Thus, whenever a component processes a tuple, the fupdate function’s version of 

such component is added into the tuple’s execution path, as illustrated by Figure 2 and 

Figure 3. Conversely, the latter approach verifies if there is any dependent component 



  

before adding the version of the fupdate function into the execution path. If there is no 

dependent component, the version is not added into the execution path. Furthermore, at 

each component, the execution path is evaluated to check and discard the versions that 

have no more dependent components. 

3.2. Distributed Multi Instance Reconfiguration 

So far, we have not discussed how to adapt distributed multi instances of component 

types. As shown in Figure 1, each component type may have many instances deployed 

over the distributed nodes, such as the Processing component type that is deployed on 

all servers at step A. If one needs to change the Pre-Processing and Processing 

component types, the old/new version of the Processing instance can only process data 

originated from the old/new version of the Pre-Processing instance, as mentioned 

before. However, considering that the servers share the workload and our 

reconfiguration proposal cannot forward the data stream to a specific server, the system 

has to keep the old Processing instances while there is some old Pre-Processing instance 

to ensure that all data stream originated from the old Pre-Processing instances are 

processed by the old Processing instances. Furthermore, the new Processing instances 

must be deployed before the new Pre-Processing instances. Thus, we have to coordinate 

the reconfiguration execution at all nodes. 

 

Figure 4. Partial inconsistent reconfiguration 

In Figure 4, if part of the data stream from Client N goes to Server Step A M, the system 

achieves an inconsistent state since the server is unable to properly process the data 

stream. Thus, the servers must have both versions (i.e., Processing B1 and B2) while the 

system is partially reconfigured because some clients are not yet reconfigured. As soon 

as the clients are reconfigured, and there are no tuples in transit from Pre-Processing A1, 

the Processing B1 instances are removed from the servers at step A and the 

reconfiguration terminates, as shown in Figure 5. Therefore, our approach guarantees 

that the servers are able to handle data stream from any client, reconfigured or not. 



  

 In order to safely remove a component R and to guarantee that there are no 

tuples in transit towards R, we have borrowed ideas from the seminal papers [Lamport 

1978] [Chandy and Lamport 1985] to have the notion of computation time in a 

decentralized manner. The idea is to add a special message (called marker) into the data 

stream to mark a specific time T in which a component is safe to be removed. Similarly 

to [Ertel and Felber 2014], as soon as R receives markers from all its dependent 

component instances, R is removed from the system. Thus, in order to remove 

Processing B1, whenever a client removes Pre-Processing A1, it adds a marker into its 

M stream channels to servers at step A, and whenever N markers (i.e., one marker from 

each client) arrives at a server at step A, Processing B1 is removed from such server. 

Then, Processing B1 is safely and gradually removed from the entire system. 

 

Figure 5. Reconfigured system 

 As in our example clients are expected to be mobile nodes using mobile 

networks (e.g., 3G and 4G), they may lose their connection any time. Our proposal 

handles nodes that may appear or disappear as follows. While the system is being 

reconfigured, if a client node X becomes unavailable before updating its Pre-Processing 

instance to version A2, the servers at step A should postpone the removal of Processing 

B1 until X becomes available and finishes its reconfiguration. We could adopt other 

strategies such as a timeout to consider that X leave permanently the system. However, 

the discussion about reconfiguration policies is not the focus of this work. Thus, we 

choose to adopt a pessimistic approach and guarantee that all tuples must be properly 

processed by the correct component version. 

 Although the system is partially reconfigured while client node X does not finish 

its reconfiguration, the system is able to evolve to Pre-Processing A3 and Processing 

B3. This is possible because each component is able to have many fselect, fupdate and foutput 

functions. Thus, the Pre-Processing and Processing component types are able to have 

the fupdate functions A1, A2 and A3, and B1, B2 and B3, respectively. After the second 



  

reconfiguration from A2 and B2 to A3 and B3, the versions A2 and B2 are removed, 

considering that this second reconfiguration have finished. 

4. Evaluation 

In this section, we present the evaluation results regarding our approach. Using our 

prototype implementation, we have measured the time required to reconfigure the 

system (i.e. update time) and the disruption caused by the reconfiguration varying the 

number of CNs and the rate (i.e. frequency) of tuple production, as well as the overhead 

imposed by our approach. Finally, concerning mobile CN disconnections, we have 

emulated CN disconnections to verify the amount of time required to complete a 

reconfiguration after an MN becomes available again. 

 Our hardware test was composed of a Dell Laptop Intel i5-3210M 2.5GHz, 8GB 

DDR3 1333MHz and Wi-Fi (802.11n) interface running Windows 8.1 64 bit, a Dell 

Laptop Intel i5 M 480 2.66GHz, 8GB DDR3 1333MHz and Wi-Fi (802.11n) interface 

running Ubuntu 12.04 LTS 64 bit, and a Fast Ethernet router with 802.11n wireless 

connection. We used one laptop to emulate the CNs and the other one to run the PNs. 

Our prototype  application used for evaluation has been implemented using the Java 

programing language and SDDL (Scalable Data Distribution Layer), a middleware for 

scalable real-time communication [Silva et al. 2012]. 

 

Figure 6. Deployed components and validation application data flow 

 The evaluation application, shown in Figure 6, is a simplification of the one 

presented in the motivating scenario in which there is no Pre-Processing component at 

the CN. The Data Gathering component generates mock data that is encoded and sent by 

the Sender, while the Receiver decodes and forwards the data to the Processing 

component. Data Gathering generates pre-defined strings that are later concatenated 

with other pre-defined strings at the Processing component. The Post-Processing then 

checks if the received string is valid or not. As we reconfigure the fupdate functions of the 

Sender and Receiver to use a different encoding/decoding method, the tuple’s value 

would be inconsistent at Post-Processing if our prototype did not properly handle such 

reconfiguration. Figure 6 illustrates how the components were deployed at each node 



  

where client is a CN and server is a PN. The reconfiguration performed is changing the 

encoding/decoding method from ISO-8859-1 to UTF-16. 

4.1. Experiments 

In order to measure the update time and the service disruption, we varied the number of 

CNs from one to 1,000 and the system’s tuple production rate from 10 tuples/s (tuples 

per second) to 10,000 tuples/s. We emulated each scenario 10 times, totalizing 160 

emulation runs and the confidence level for all results is 95%. The JAR file that 

encapsulates each deployed component has 3KB (kilobytes). We also evaluated the state 

management overhead and the overhead that our prototype imposes while no 

reconfigurations are performed. All experiments were done using the static approach of 

the dependency management. 

 Regarding to reliability of the reconfiguration approach, all reconfigurations 

were performed consistently. This means that all tuples were processed exactly once and 

were handled by the right fupdate function at the Receiver. Thus, we were able to achieve 

the global system consistency. 

4.1.1 Update Time 

The update time experiment measured the Round-trip Delay (RTD), which encompasses 

the time interval from the instant of time the reconfiguration starts until all CNs 

complete the execution of the reconfiguration. The tuple production rate informs the 

production rate of the entire system, not for each CN. 

 As expected since our approach does not need to await for a safe state to proceed 

the reconfiguration, the update time is considerably stable. It ranges from 10.05ms in the 

scenario with 1 CN and production rate of 10 tuples/s to 11.88ms in the scenario with 

1,000 CNs and 1,000 tuples/s. The update time starts increasing with a tuple production 

rate of 10,000 tuples/s; however, this time increase could be affected by the high CPU 

(central processing unit) usage. With such production rate, both laptops experienced 

CPU usages of 100%. This scenario has to be revaluated to show if the update time 

increase is due to the production rate or due to the laptops’ overload. 

4.1.2 Service Disruption 

In the service disruption experiment, we show the impact that a reconfiguration causes 

on the system’s throughput (of tuples). The goal was to identify if the throughput at the 

end of the stream processing was affected by the reconfiguration performed. Thus, in 

order to measure the service disruption, we assess the system’s throughput at the Post-

Processing component while the tuple production rate was of 10,000 tuples/s. 

 According to our experiment results, the service disruption was negligible. The 

throughput in in the scenarios with 1 and 100 CNs had a minor increase in the 

reconfiguration time T when compared with T - 1, from 9,996 tuples/s to 10,001 tuples/s 

and from 10,000 tuples/s to 10,013 tuples/s, respectively. In both scenarios, the 

throughput was not affect by the reconfiguration. In the scenarios with 10 and 1,000 

CNs, on the other hand, the reconfiguration had an insignificant influence when we 

compare the throughput at time T and T - 1. With 10 CNs, the throughput varied from 

10,010 tuples/s at T - 1 to 10,008 tuples/s at T, which represents only 0.02% of service 



  

disruption. In the same way, the throughput varied from 9,999 tuples/s to 9,992 tuples/s, 

which represents a decrease of 0.07%, in the scenario with 1,000 CNs. The experiments 

demonstrates that our approach causes, in some cases, a marginal decrease (lower than 

0.1%) in the system’s throughput. 

4.1.3 Overhead 

We measured the overhead that our mechanism imposes on the application prototype 

when no reconfiguration is performed. To do this experiment, we calculated the time 

required by the application to generate and process 100,000 tuples with and without the 

reconfiguration prototype. The overhead was 2.32%, which seems to be reasonable for 

the most of the applications considering the functionality provided by our proposal. 

4.1.4 CN Disconnection 

Due to the possibility of disconnections of mobile CNs, we assessed the amount of time 

required to complete a reconfiguration after an MN becomes available again. To do so, 

we have forced a CN to disconnect before the reconfiguration and reconnect after the 

reconfiguration. The reconnection time encompasses the time interval from the instant 

of time the CN reconnects until it completes the execution of the reconfiguration. As the 

number of CNs and the tuple production rate has minor impact on the update time (see 

Section 4.1.1), we conducted this experiment with 1,000 CNs and 1,000 tuples/s. As 

soon as the CN reconnects, it took 31.50ms to complete the reconfiguration. 

5. Conclusion and Future Work 

This paper proposes and validates a non-quiescent approach for dynamic reconfiguration 

that preserves system consistency in distributed data stream systems. Unlike many 

works that require blocking the affected parts of the system to be able the proceed a 

reconfiguration, our proposal enables the system to evolve in a non-disruptive way. 

Apart from the consistency, our proposal handles nodes that may disconnect and 

reconnect at any time. Hence, the main contributions of this paper are (i) a mechanism 

to enable safe reconfiguration of distributed data stream systems, (ii) a prototype 

middleware that implements the mechanism, and (iii) experiments that validate and 

demonstrate the safety of our proposal. 

 Problems such as parametric variability and reconfiguration reasoner, which is 

responsible for deciding when an reconfiguration is required, which alternative best 

satisfies the overall system goal, and which reconfigurations are needed in order to drive 

the system to an optimal state are not covered by our research. 

 We are aware that much work and research is still needed; however, considering 

the encouraging preliminary performance evaluation, we are confident that our approach 

will facilitate the development of reconfigurable stream systems. In a scenario with 

1,000 CNs and 1,000 tuples/s, our prototype was able to reconfigure the entire system in 

16.65ms, while imposing an overhead of 2.32%. Regarding to the system’s throughput, 

the service disruption was lower than 0.1% when a reconfiguration was performed. 

Another important result is the capability of finishing the reconfiguration when a CN 

reconnects. In this way, our proof of concept implementation took 31.50ms to complete 

the reconfiguration after the CN’s regress. We expect to advance our work along the 



  

following lines: (i) implementing and evaluating the dynamic dependency management, 

(ii) advancing in the field of reconfiguration policies and state reconfiguration, (iii) 

using a more realistic and complex evaluation application to better evaluate the proof of 

concept prototype, and (v) supporting legacy nodes that cannot perform a 

reconfiguration due to some limitation. 
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