
LB-RLT Approach for Load Balancing
Heterogeneous Storage Nodes

Antonio M. R. Almeida, Denis M. Cavalcante,
Flávio R. C. Sousa e Javam C. Machado 1

1 Mestrado e Doutorado em Ciencia da Computacao (MDCC)
Universidade Federal do Ceará (UFC) – Fortaleza, CE – Brasil

{manoel.ribeiro,denis.cavalcante}@lsbd.ufc.br {sousa,javam}@ufc.br

Abstract. Cloud computing is a paradigm of service-oriented computing and
has changed the way computing infrastructure is abstracted and used. The
cloud is composed by heterogeneous resources and has a variable workload.
Thus, load balancing techniques are crucial to distribute workload to process-
ing nodes for enhancing the overall system performance. Conventional algo-
rithms for load balancing have limitations in this environment, or they do not
consider specific aspects of the resources simultaneously, e.g., response time
and throughput. To address these limitations, this paper presents an approach
to load balancing in the cloud. This approach considers cloud infrastructure
storage throughput and a heterogeneous storage nodes environment. In order
to evaluate this approach, we have conducted experiments that measure the re-
sponse time, throughput and success rate and compared our results against con-
ventional algorithms. Experimental results confirm that our approach ensures
quality of service agreement, while using resources more efficiently.

1. Introduction

Cloud computing is a paradigm of service-oriented computing and has changed the way
infrastructure is abstracted and used. Infrastructure as a service (IaaS) is the most basic
cloud model for provisioning compute, storage, and networking resources. In cloud stor-
age, there are major types of storage resources, layered on the following order bottom-up:
(a) Block storage: low level I/O access to records through a fixed size (i.e. volumes);
(b) File storage: files are composed by its data and are organized through a hierarchi-
cal directory. A file is associated to its directory by a well-defined system meta-data
that also provides some basic information such as access time, file size etc; (c) Object
storage: objects are composed by data and user-accessible attributes (i.e user meta-data)
[Mesnier et al. 2003]. User meta-data can be included into objects using any custom
key/value, thus making data and user meta-data physically together.

Object storage systems are well suited to scaling-out by replicating the object
itself several times for redundancy as well as for responding to a higher demand. During
a higher demand, a common necessity of cloud providers is to be able to meet the most
strict Quality of Service (QoS) levels defined in a Service Level Agreement (SLA) better
using the available resources before allocating more replicas/servers. However, it is still a
challenging issue for dynamic application providers how to efficiently tackle scenarios of
gradual load variations and load peaks from the workloads seen by dynamic applications.



For this challenge, the proper load balance of replicas are a key point to avoid violations
of SLA requirements and to reduce infrastructure costs. [Xie et al. 2015]

Many works have been developed in order to optimize the load balancing of
replica placement in systems based on centralized naming such as Lightweight Direc-
tory Access Protocol (LDAP) or distributed ones such as distributed hash tables (DHT)
(i.e. hash functions) that avoids searching for available nodes in a central directory
[Brinkmann et al. 2000] [Allcock et al. 2002] [Godfrey et al. 2004]. HUSH and CHUSH
algorithms have proposed hashing functions for reducing look-up response time as well
as load balancing the replicas according to server weighting [Honicky and Miller 2004]
[Weil et al. 2006].

Another important front of research has focused on load balancing of replica se-
lection, i.e., which replica is the most suitable for being used taking into account some
aspects such as performance, cost, security, number of accesses, and replica crashes
[Rajalakshmi et al. 2014]. By this means, replica selection is part of load balancing tech-
niques that aim to distribute workload to processing nodes for enhancing the overall per-
formance of system.

Many common aspects of cloud systems leveraged by load balancing approaches
have been classified according to the type of algorithm, knowledge base, issues to be ad-
dressed, usage and drawbacks [Katyal and Mishra 2013]. Even though some authors have
not yet approached fine-grained load balancing by distributing the read workload over
data replicas [Weil et al. 2006]. Other authors optimized replica selection by considering
disk head scheduling, cache utilization and inter-brick load balancing [Lumb et al. 2003].
It is clear that these load balancing approaches could be considered by replica selection
optimization in order to improve some specific aspect of a cloud system.

An ideal load balancing algorithm for homogeneous resources should avoid over-
loading or under loading of any specific node. However, the cloud is composed by het-
erogeneous resources and variable workloads, thus making harder the implementation
of load balancing strategy because it involves additional processing to efficiently detect
how much one replica should be selected more than others while still avoiding starvation.
Conventional algorithms for load balancing have limitations in this environment, or they
do not consider specific aspects of the resources simultaneously, e.g., response time and
throughput. To address these limitations, this paper presents an approach for load balanc-
ing replica selection in a cloud object storage. The major contributions of this paper are
as follows:

• It proposes an approach to load balance replica selection of read requests for het-
erogeneous nodes by combining and comparing their last read data throughput
and their total of read data.
• It presents a full prototype implementation in a real cloud object storage system,

an experimental evaluation and the results showing that our approach is effective
in balancing replica selection of read requests for heterogeneous storage nodes
environment.
Organization: This paper is organized as follows: Section II explains our ap-

proach. The environment is described in Section III. The evaluation of our approach is
presented in Section IV. Section V surveys related work and, finally, Section VI presents
the conclusions.



2. LB-RLT Approach
Our approach, Load Balance by Round-robin, Last Read Data Chunk Throughput and
Total of Read Data Chunks (LB-RLT), distributes dynamically the read requests of objects
through node replicas. LB-RLT takes advantage of an architecture that consists of a proxy
node accounted for spreading the workload through multiple node replicas. Every node
replica is a storage node that is able to read/write one object replica requested or submitted
by a proxy node in order to support a client demand for an object, thus making the object
access transparently for the client as shown in the Figure 1.

Client

Proxy Node

Node 02 Node 03Node 01

Figure 1. Architecture

To improve understanding, Table 1 shows the definitions. In the Figure 1, we
can think about how an object is requested or submitted by the client until it reaches
the Node 01, Node 02 or Node 03. It is a common technique for transferring objects to
split and transfer the object in small units called dataChunk. These dataChunks have a
fixed size, thus the client sends/reads multiples dataChunks to/from the proxy node that
forwards/retrieves them until an object is totally transferred. For our replicated system,
one replica is sufficient to process a read request.

Table 1. Definitions

Term Description
DataChunk A fragment of an object

DataChunkSize Standard size of a dataChunk

DataChunkTransferTime
Total transfer time in seconds of a dataChunk between a proxy node and a stor-
age node

Throughput Transfer rate per object or DataChunk (bytes / seconds)

LastReadDataChunkThroughput
The throughput measured by the last reading of a dataChunk from a storage
node

TotalReadDataChunks
The number of dataChunks sucessfully read from a storage node until present
moment

It is important to note that the transfer time for each dataChunk to be transferred
is very sensitive to the network as well as the node performance, i.e., dataChunkTransfer-
Time gets lower when less requests are demanded to a storage node or gets higher when
more requests are demanded to a storage node. By this means, we define the Equation 1:

Throughput =
dataChunkSize

dataChunkTransferT ime
(1)

Considering the previous architecture showed at Figure 1 and the Equation 1 used
to measure throughput during the reading of objects, LB-RLT adds to the proxy node the
capability of collecting in runtime the following metrics for every storage node:



• LastReadDataChunkThroughput: The measurement of a throughput evaluated in
the last reading of dataChunk from a storage node by a proxy node as described
by the Equation 1. In this manner, the lastReadDataChunkThroughput metric is
updated frequently instead of being collected only when an object is totally read.
Once the proxy node holds a lastReadDataChunkThroughput for each storage
node regardless of which object is being read, every new read object request will
consider the last throughput performed for each storage node.
• TotalReadDataChunks: The measurement of how many dataChunks were read

from each storage until present moment, i.e., totalReadDataChunks metric is in-
cremented only for dataChunks received with success by a proxy node.

By having both metrics being evaluated in runtime and using round-robin sorting
to spread equally when the previous metrics are the same, LB-RLT adds to the proxy
node, the capability of load balancing the new coming read request by evaluating and
comparing the storage nodes using the Equation 2.

Performance = lastReadDataChunkThroughput× totalReadDataChunks
(2)

Our performance model is able to evaluate the node performance when through-
put metric is much higher/lower than the totalReadDataChunks, thus being the important
value for distinguishing performance among replica nodes as well as when throughput is
relatively similar among the replica nodes. In this second case, the totalReadDataChunks
is able to evaluate which storage node has performed more reading requests with success
in order to distinguish the best node. Our approach considers different types of workloads
according to the following:

• Low/medium workloads: any replica node would respond the requests with suc-
cess, but the best replica nodes would be more used because of their highest
throughput;
• High workloads: best replica nodes would still respond with success, but their

throughput would get a little bit down. In this scenario, our model would let the
worse replica nodes be chosen a little bit more due the fact that it is still better to
use the bad nodes than otherwise;
• Extreme High workloads / Above cloud capacity: any storage node replica would

be used to attend the extreme workload stress.

LB-RLT aims to load balance heterogeneous storage node by targeting high
throughput, low response time and longer high success rate with no profiling informa-
tion required. Table 2 summarizes the features of the approach.

2.1. LB-RLT Algorithm
LB-RLT is described by two algorithms: (1) the LB-RLT Performance Score Evaluation
Algorithm 1 that updates the performance score of each replica node according to our
approach and (2) the LB-RLT Read Object Request Algorithm 2 that sorts the replica
nodes using our approach and choose the best one to read the data object.

In Algorithm 1, on line 1, the input parameter replicasNodeList is all the storage
nodes that contain a replica of the requested object. On line 2, the output parameter is



Table 2. LB-RLT Approach

Type of Algorithm Dynamic and Centralized
Prerequisite Replicated Data

Knowledge Base Locally and in runtime measured
Issue to be addressed LastReadDataChunkThroughput, TotalReadDataChunks

Usage Heterogeneous Nodes / No profiling needed
Measure expiration yes

the replicaNodeList with its performance score updated for each replica node. On line 5,
LB-RLT evaluates the performance score of the current node.

Algorithm 1: LB-RLT PERFORMANCE SCORE EVALUATION

1 Input: replicasNodeList

2 Output: replicasNodeList
3 foreach node in the replicasNodeList do
4 node.performanceScore← node.lastReadDataChunkThroughput ×
5 node.totalReadDataChunks

6 return replicasNodeList

Analyzing the Algorithm 2, on line 1, the input objectData is the data object to
be read by the proxy node from a replica node. On line 2, the input replicasNodeList is
all the replica nodes that can be used to retrieve the data object. On line 3, the output
dataChunk[] is the data chunks reads of the object data. On line 4, the Algorithm 1 is
performed to evaluate the performance score of all the replica nodes. On line 5, the list of
storage nodes is sorted according to our load balancing approach. In case of similar per-
formance score among the replica nodes, the replicaNodeList is sorted using round-robin.
On line 6, the replica node with best performance score is chosen to start the reading of
the data object. On line 7, proxy node begins to read all the data object dataChunk by
dataChunk from the storage node. On line 9, it is verified if the reading of the dataChunk
has succeeded. In positive case, on line 10 and on line 11, for the current best node, the
lastDataChunkThroughput and the totalReadDataChunks metrics are updated.

Algorithm 2: LB-RLT - OBJECT READ REQUEST

1 Input: objectData

2 Input: replicasNodeList
3 Output: dataChunk[]
4 replicasNodeList← evaluateLBRLTPerformanceScore(replicasNodeList)
5 replicasNodeList← sort(replicasNodeList)
6 bestNode← getFirstNode(ReplicasNodeList)
7 foreach dataChunkIter in the objectData do
8 dataChunk[i]← readDataChunkFrom(bestNode)
9 if ReadDataChunkSucceeded then

10 bestNode.lastDataChunkThroughput← dataChunkSize /dataChunkTransferTime
11 bestNode.totalReadDataChunks += 1

12 return dataChunk[]



3. Environment
There are many cloud object storage solutions available, such as Ceph, GlusterFS and
OpenStack-Swift. In this work, we used OpenStack-Swift that is a highly available, dis-
tributed, eventually consistent object/blob store [Swift 2016]. For evaluating our exper-
iment, we chose Swift due its simplicity, once it seemed easier to implement our load
balancing approach. We use the Ubuntu 12.04 operating system and Swift Kilo version.

3.1. OpenStack-Swift
Swift architecture can hold many different web service nodes and background processes
whereas each component can be scaled multiple times. The web service nodes are clas-
sified in two main categories: proxy server type and storage node type (composed by
account server, container server and object server). The background processes are re-
sponsible for data replication, data reconstruction, data updating and data auditing. The
proxy server node takes requests from a client and forwards them to the account, container
and object server nodes in order to persist/retrieve data objects and its metadata to/from
disks. Swift implements a ring (consistent hashing) in order to map data and its replicas
from the logical locations to their physical locations.

Swift implements partial replication model and flexible configuration for number
of nodes and number of replicas. Read and write requests from/to Swift obeys the follow-
ing rules: for reading requests, it is enough only one replica node to retrieve the object
and return success to the client; for writing requests, it is enough the quorum of half of
total replica nodes plus one to save the object and return success to the client.

3.2. Benchmark
In order to evaluate our approach, we used Cloud Object Storage Benchmark (COSBench)
[Zheng et al. 2013]. COSBench has support to many different cloud object storage solu-
tions on the market like Swift, Amazon S3, and Ceph thus making easier any future
comparison among those cloud object storage solutions. We use the COSBench 0.4.0.1
version.

For our workload, we fixed read/write ratio at 80/20. We varied tiny sizes for
object data size: 4KB and 16KB. For each object data size, we varied the number of
threads/workers: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 700 in order to compare the
approaches in different scales. We did not vary the delay between requests. The perfor-
mance of the load balancing approaches was compared using the average values of the
benchmark metrics collected in a interval of 5 seconds by COSBench with transaction
phase of 300s and the default values for other COSbench parameters. In this paper, we
considered three metrics for evaluating the approaches: average response time, through-
put and success ratio.

3.3. Hardware
For our hardware configuration, we deployed five different physical machine nodes. One
node for COSBench and four nodes for a minimalist Swift deployment. For our Swift
deployment, we configured one proxy node with more processing power and three het-
erogeneous nodes. Storage Node 02 (SN2) and Storage Node 03 (SN3) presented best
performance, whereas Storage Node 01 (SN1) presented poor performance during our
initial performance profiling. Hardware details are described at the Tables 3 and 4.



Storage Node (SN1) was chosen on purpose, with a disk architecture that offers
less IO performance than we, as Table 4. This aspect tries to play a scenario with hetero-
geneous nodes in a data center.

For our swift deployment with three storage nodes, we configured three replicas
for each data object just because it is a common setup and it does not make sense to have
more replicas than the number of nodes even though our approach works is agnostic to
the number of replicas and nodes.

Table 3. CPU Configuration
Node Cores MHz L1 / L2 / L3 (Cache)

COSBench 8 800 32 / 256 / 8192
Swift Proxy 8 800 32 / 256 / 8192

SN1 2 1995 32 / 2048 / N/A
SN2 4 1600 32 / 256 / 6144
SN3 8 800 32 / 256 / 8192

Table 4. RAM and Disk Configuration
Node RAM(GB) R/RW(IOPS) Filesystem

COSBench 8 133 / 100,4 xfs
Proxy Node 16 161,4 - 123,8 xfs

SN1 3 98,4 / 80,4 xfs
SN2 8 147,8 / 119,4 xfs
SN3 4 142,6 / 121,4 xfs

IOPS benchmark performed by random disk operations for a workload of 4KB by
16 threads simultaneously using FIO - Flexible I/O Tester Synthetic Benchmark.

4. Evaluation

In this section, we describe the results we have obtained from it. According to the
available Swift configuration, we verified three different load balancing approaches im-
plemented by the Swift object storage, thus making our approach comparable against
production-like approaches described in the Table 5.

Approaches under evaluation are classified according to their types and needed for
profiling as shown in the Table 6. For LB-RLT evaluation against other approaches, we
focused on analyzing which load balance approach obtained best results from the premise
described in COSBench paper which considers a better system one that is able to engage
more clients with same resources [Zheng et al. 2013]. In our experiments, we configured
the LB-RW approach to give preference to the best two nodes (SN2 and SN3).

4.1. Replica Selection Monitoring

The replica selection behavior of the load balancing approaches was monitored enabling
”statsd” time-series metrics [Malpass and Malpass 2011] via UDP protocol for every
Swift node in order to confirm which storage nodes were being chosen for every load
balancing approach. Below, we describe what happened in the experiment for 16KB as
object size since the overall behavior of the approaches were similar for 4KB as object
size.



Table 5. Approaches performed
Notation Description

LB-R
Load Balance by Round-robin distribution. In the Openstack Swift, this is
called the shuffling method (tested) [Ying et al. 2015].

LB-RW
Load Balance by Round-robin with static Weights. Profiling of nodes perfor-
mance is needed. In the Openstack Swift, this is called the affinity method
(tested).

LB-RCT
Load Balance by Round-robin and Connection Timing. In the Openstack
Swift, this is called the timing method (tested).

LB-RL
Load Balance by Round-robin and LastReadDataChunkThroughput per-
formed by each storage node (proposed and tested).

LB-RLT
Load Balance by Round-robin, LastReadDataChunkThroughput and Total-
ReadDataChunks performed by each storage node, i.e., total of dataChunks
successfully read (proposed, tested and the best choice).

Table 6. Compared Approaches

Approach Profiling Run-time measurement distribution criteria Standard
LB-R N/A No Round-robin Yes

LB-RW Needed No Weights Yes
LB-RCT N/A Yes Response-time Yes
LB-RL N/A Yes Throughput Custom

LB-RLT N/A Yes Throughput and Total succeeded Reads Custom

The LB-R approach balanced equally the workload for all the three storage nodes.
Since it is the obvious load balancing behavior, we did not show its monitoring in the
Figure 2. LB-RCT had similar results in comparing with LB-R, but it got worse even
though LB-RCT also used round-robin technique. In the beginning of the experiment,
LB-RCT gave preference to the worse node (SN1). As LB-RCT strategy uses no disk
access, since it performs only an HTTP connection test, this happened mainly because
SN1 has the largest L2 memory cache. This can be verified at the Item C of the Figure 2,
for the LB-RTC approach, the continuous line (SN1) stayed above the dashed lines (SN2
and SN3). According to [Foong et al. 2003], when transfer sizes are less than L2, the
cache is large enough to accommodate all of the application buffers. In LB-RCT case, L2
cache memory made TCP connection faster for the worse storage node (SN1).

LB-RW balanced the workload only to the SN2 and SN3 according to the previ-
ously configured weights with exception when the benchmark tool began to overload the
cloud object storage in such a way that was impossible its proper usage. By this means,
Swift implementation tries any available replica node. So, it is clear, at the Figure 2,
that LB-RW used SN1 (worse storage node) only when the system was already unable to
respond properly the requests.

LB-RL balanced almost equally the workload to all storage nodes. We believe this
happened because the way we implemented LB-RL caused the replica selection to prefer
nodes with higher throughput values without considering which nodes were processing
more successful readings, thus not being enough to evaluate storage node performance
dynamically.

Our approach LB-RLT load balanced the workload with three behaviors: (1) at the
very beginning, SN2 or SN3 was used because only one was able to respond the requests,



(2) after this very beginning and before the half of the experiment, both SN2 and SN3 were
used and (3) before a little bit the half of the experiment, both SN2 and SN3 continued
to be used, but LB-RLT started to use the SN1. This last behavior happened because the
two best nodes were not enough for processing the increased workload as described by
the continuous line representing the SN1 at the Figure 2.

Figure 2. Load Balancing Monitoring for 16KB.

4.2. Performance Comparison

LB-RLT and LB-RW performed more operations with success than the other approaches.
This average of total of operations performed with success is shown at the Table 7.

Table 7. Number of operations (avg. ops) for 100% Success Rate
Approach 4KB read 16KB read 4KB write 16KB write

LB-R 1.66× 104 1.10× 104 3.70× 103 2.10× 103

LB-W 1.90× 104 1.44× 104 4.46× 103 2.85× 103

LB-RCT 1.50× 104 1.09× 104 3.16× 103 2.06× 103

LB-RL 1.85× 104 1.08× 104 4.30× 103 1.99× 103

LB-RLT 1.96× 104 1.45× 104 4.65× 103 2.87× 103

Comparing the success rate metric with 4KB as the object size, only LB-RLT
performed all the read requests with 100% success rate as shown by the continuous line
at the Figure 3(a). A similar behavior happened with 16KB as the object size because
LB-RLT lasted longer in 80% of success rate as shown by the continuous line in the
Figure 4(a). LB-RCT and LB-R were totally worse than the others. Our environment was
deployed to not support purposely a high number of workers with 16KB as object size
(above cloud capacity scenario).



Comparing the throughput metric with 4KB as the object size, LB-RW could not
maintain the highest throughput after 200 workers. LB-RL had similar results with LB-
RW. From the middle to the end, LB-RLT bypassed LB-RW as shown by the continuous
line in the Figure 3(b). In the comparison with 16KB as the object size, LB-RW could
not maintain again the best throughput after 200 workers as shown in the Figure 4(b).
Considering the lower success rates during the rest of the experiment, LB-RLT maintained
a little bit better throughput than all the other approaches. LB-RL had a bad throughput
similar to LB-RCT and LB-R because LB-RL approach could not give preference to the
best nodes as discussed at Section 4.1.

Comparing the response time metric with 4KB as the object size, LB-RLT per-
formed the lowest response time during all experiment until in the end when the success
rate 4(a) of the other approaches began to fall as shown at the Figure 3(c). The compari-
son with 16KB as object size, LB-RLT had the best response time until near after success
rate began to fall from 100% 4(a) as shown in the Figure 4(c). The response time metric
for LB-RLT increased in the end because LB-RLT processed more requests than the other
approaches, once the others were losing requests. LB-RL again did not perform well for
the same reason described at the throughput comparison. The response time metric is
available and is statistically analyzed at the Section 4.3

0 200 400 600

0.7

0.8

0.9

1

workers

Su
cc

es
sR

at
e

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(a) Success Rate

0 200 400 600
0

100

200

300

400

workers

T
hr

ou
gh

pu
t(

op
/s

)

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(b) Throughput

0 200 400 600

0

200

400

600

800

1,000

workers

R
es

po
ns

e
Ti

m
e

(m
s)

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(c) Response Time

Figure 3. Load Balance Approaches Comparison For 4KB object sizes

4.3. Response Time Analysis

For 4KB as object size, at Table 8, LB-RLT performed on average a response time 11.58%
better than any other approach. In the best case, the response time was 36.11% better and
in the worst case only 1,93% worse. The experiment with 256, 512 and 700 workers
were not considered because not all the approaches have completed 100% of successful
operations.



0 200 400 600

0.4

0.6

0.8

1

workers

Su
cc

es
sR

at
e

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(a) Success Rate

0 200 400 600

100

200

300

workers

T
hr

ou
gh

pu
t(

op
/s

)

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(b) Throughput

0 200 400 600

0

200

400

600

workers

R
es

po
ns

e
Ti

m
e

(m
s)

LB-RL
LB-RLT
LB-RCT

LB-R
LB-RW

(c) Response Time

Figure 4. Load Balance Approaches Comparison For 16KB object sizes

Table 8. Response time analyses for 4KB object size
Workers LB-RTL LB-RL LB-RCT LB-R LB-RW Best others (Best others/LB-RLT) - 1

1 20.53 20.97 20.78 20.72 20.88 20.72 .93%
2 20.33 20.08 21 20.09 20.22 20.08 -1.23%
4 21.71 21.29 23.01 25.38 21.5 21.29 -1.93%
8 28.62 32.67 32.45 36.48 31.08 31.08 8.6%
16 38.74 40.36 53.99 61.74 47.06 40.36 4.18%
32 63.46 64.04 108.48 120.28 82.83 64.04 .91%
64 88.81 117.44 247.5 231.19 153.72 117.44 32.24%

128 145.79 198.43 553.5 491.46 292.49 198.43 36.11%
256 309.73 404.59 946.49 1036.82 567.81 404.59 30.63%
512 781.11 910.85 823.13 1084.23 1040.42 823.13 5.38%

mean 11,58%
best 36,11%

worse -1,93%



For 16KB as object size, at Table 9, LB-RLT performed on average a response
time 10.89% better than any other approach. In the best case, the response time was
53.46% better and in the worst case 3.57% worse. The experiment with 256, 512 and 700
workers were not considered because none approach has completed 100% of successful
operations.

Table 9. Response time analyses for 16KB object size
Workers LB-RLT LB-RL LB-RCT LB-R LB-RW Best others (Best others/LB-RLT) - 1

1 22.19 23.1 22.68 22.78 22.96 22.68 2.21%
2 21.95 23.93 23.52 23.46 22.93 22.93 4.46%
4 25.47 26.48 25.21 25.01 24.56 24.56 -3.57%
8 32.6 32.36 32.82 32.9 35.82 32.36 -.74%
16 47.99 49.41 50.52 48.92 55.84 48.92 1.94%
32 79.16 100.09 90.82 84.67 100.54 84.67 6.96%
64 119.63 264.74 198.83 192.32 183.59 183.59 53.46%

128 229 586.96 496.63 468.89 280.23 280.23 22.37%
mean 10.89%
best 53.46%

worse -3.57%

5. Related Work
LB-R and LB-RW can be classified as static approaches according to
[Khiyaita et al. 2012] and [Katyal and Mishra 2013]. LB-R approach is not able to
adapt to any change during runtime, thus making it a bad choice for heterogeneous
storage nodes environment. LB-RW approach allows finer control according to prior
knowledge of nodes’ capacity. It basically sets a weight for each node. In case of same
weights for storage nodes, equally sorting by round-robin is used to spread the workload.
A drawback for LB-RW is mainly due to its static behavior for high loads, once the
approach does not collect any metric of the system current performance.

LB-RCT is mentioned as Central Load Balancing Decision Model (CLBDM) by
[Katyal and Mishra 2013] [Radojević and Žagar 2011] to be used in a static environment,
but it uses a runtime metric to load balance the nodes. Basically, LB-RCT measures
the duration required to establish a TCP connection between a proxy node and a storage
node in order to give preference to the storage nodes with lower connection latency. It also
implements measure expiration protection and equally sorts nodes in case of same latency
environment. A drawback for this approach is due to the fact that latency of connection
does not consider other system aspects such as disk performance.

LB-RL approach is cited by [Katyal and Mishra 2013] as a throughput issue to
be addressed for static, dynamic, centralized and distributed types of algorithms. We
analyzed our LB-RL implementation on OpenStack-Swift as a dynamic load balance ap-
proach by using the lastReadDataChunkThroughput measured between the proxy node
and the storage nodes with measure expiration protection and equally-sorting nodes in
case of same throughput. A drawback for this approach is due to the fact that, according
to our experiments, using only the lastReadDataChunkThroughput is not enough because
the bad node continued to be selected for reading more than it was needed.

Our approach aimed to bypass limitations from the previous approaches by using
the lastReadDataChunkThroughput that considers a last storage node performance and the



totalReadDataChunks as a long-term performance of storage node until present moment.
By this means, in runtime, LB-RLT is able to give preference to the best nodes without
neglecting the bad nodes when needed.

6. Conclusion and Future Work

This work presented LB-RLT, an approach for load balancing replica selection in a cloud
object storage heterogeneous system. LB-RLT collects two metrics: lastReadDataChunk-
Throughput and totalReadDataChunks, and combines both metrics in order to adapt not
only for storage nodes heterogeneous environments but also for when load requirement
changes dynamically. We evaluated the LB-RLT approach by considering different per-
formance metrics, obtaining the lowest response time, the highest throughput rate and
lasting success rate, without any prior performance profiling. Considering our results,
LB-RLT improves the overall performance of cloud object storage systems.

As future work, we intend to conduct new experiments with different proportion
between read and write requests as well as more scenarios for workloads. Other important
issues to be addressed are related to experiments with a greater number of nodes and the
analysis of expiration time when there is more delay between the coming requests.

Acknowledgments

This work is partially supported by Hitachi Data Systems (HDS) and Laboratório de Sis-
temas e Banco de Dados (LSBD) - UFC.

References

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., Meder,
S., Nefedova, V., Quesnel, D., and Tuecke, S. (2002). Data management and transfer in
high-performance computational grid environments. Parallel Computing, 28(5):749–
771.

Brinkmann, A., Salzwedel, K., and Scheideler, C. (2000). Efficient, distributed data place-
ment strategies for storage area networks. In Proceedings of the twelfth annual ACM
symposium on Parallel algorithms and architectures, pages 119–128. ACM.

Foong, A. P., Huff, T. R., Hum, H. H., Patwardhan, J. P., and Regnier, G. J. (2003). Tcp
performance re-visited. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 70–79. IEEE.

Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., and Stoica, I. (2004). Load
balancing in dynamic structured p2p systems. In INFOCOM 2004, volume 4, pages
2253–2262. IEEE.

Honicky, R. and Miller, E. L. (2004). Replication under scalable hashing: A family of
algorithms for scalable decentralized data distribution. In Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, page 96. IEEE.

Katyal, M. and Mishra, A. (2013). A comparative study of load balancing algorithms in
cloud computing environment. International Journal of Distributed and Cloud Com-
puting, 1(2).



Khiyaita, A., Zbakh, M., El Bakkali, H., and El Kettani, D. (2012). Load balancing cloud
computing: State of art. In Network Security and Systems (JNS2), 2012 National Days
of, pages 106–109.

Lumb, C. R., Ganger, G. R., and Golding, R. (2003). D-sptf: Decentralized request
distribution in brick-based storage (cmu-cs-03-202).

Malpass, I. and Malpass, I. (2011). Measure anything, measure everything.

Mesnier, M., Ganger, G. R., and Riedel, E. (2003). Object-based storage. Communica-
tions Magazine, IEEE, 41(8):84–90.

Radojević, B. and Žagar, M. (2011). Analysis of issues with load balancing algorithms in
hosted (cloud) environments. In MIPRO, 2011 Proceedings of the 34th International
Convention, pages 416–420. IEEE.

Rajalakshmi, A., Vijayakumar, D., and Srinivasagan, K. (2014). An improved dynamic
data replica selection and placement in cloud. In Recent Trends in Information Tech-
nology (ICRTIT), 2014 International Conference on, pages 1–6. IEEE.

Swift (2016). OpenStack. http://docs.openstack.org/developer/
swift/.

Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C. (2006). Crush: Controlled,
scalable, decentralized placement of replicated data. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 122. ACM.

Xie, Q., Dong, X., Lu, Y., and Srikant, R. (2015). Power of d choices for large-scale
bin packing: a loss model. In Proceedings of the 2015 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems, pages 321–
334. ACM.

Ying, L., Srikant, R., and Kang, X. (2015). The power of slightly more than one sample in
randomized load balancing. In Computer Communications (INFOCOM), 2015 IEEE
Conference on, pages 1131–1139. IEEE.

Zheng, Q., Chen, H., Wang, Y., Zhang, J., and Duan, J. (2013). Cosbench: cloud object
storage benchmark. In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering, pages 199–210. ACM.


